Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes

Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-10, Vol.17 (21), p.8379-8391
Hauptverfasser: An, Lijin, Swallow, Jack E. N, Cong, Peixi, Zhang, Ruomu, Poletayev, Andrey D, Björklund, Erik, Didwal, Pravin N, Fraser, Michael W, Jones, Leanne A. H, Phelan, Conor M. E, Ramesh, Namrata, Harris, Grant, Sahle, Christoph J, Ferrer, Pilar, Grinter, David C, Bencok, Peter, Hayama, Shusaku, Islam, M. Saiful, House, Robert, Nellist, Peter D, Green, Robert J, Nicholls, Rebecca J, Weatherup, Robert S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8391
container_issue 21
container_start_page 8379
container_title Energy & environmental science
container_volume 17
creator An, Lijin
Swallow, Jack E. N
Cong, Peixi
Zhang, Ruomu
Poletayev, Andrey D
Björklund, Erik
Didwal, Pravin N
Fraser, Michael W
Jones, Leanne A. H
Phelan, Conor M. E
Ramesh, Namrata
Harris, Grant
Sahle, Christoph J
Ferrer, Pilar
Grinter, David C
Bencok, Peter
Hayama, Shusaku
Islam, M. Saiful
House, Robert
Nellist, Peter D
Green, Robert J
Nicholls, Rebecca J
Weatherup, Robert S
description Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO 2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O 2 . Instead, trapped O 2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O 2 is removed on discharge, but excess Ni 2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO 2 in contact with the electrolyte in surface degradation through O 2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO 2 degradation. Bulk redox activity in LiNiO 2 proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.
doi_str_mv 10.1039/d4ee02398f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3116337323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121574737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</originalsourceid><addsrcrecordid>eNpd0c9LHDEUB_AgStdue_FeCfRShLH5NcnMqRRdf4DgxUJvIZO82c3u7GRNZor97xtdXauXvJD34SXhi9ARJaeU8Pq7EwCE8bpq99AhVaUoSkXk_ste1myCPqa0JEQyouoPaMLrrDmtDtHvc58G389Hnxa54GbsVjiCCw-4jWGNezCxSGNsjQXsYB6NM4MPPfY97vyw8GM23q6gw-HBO8DWDIvgIH1CB63pEnx-rlP062J2d3ZV3NxeXp_9vClsvn8oLGOysXkVpXDC0rIuBW0ryYBYo0RJQZiGClCSOVHXVcls04gKrDJtPmj4FP3Yzt2MzRqchX6IptOb6Ncm_tXBeP220_uFnoc_mlIhGZU0T_j2PCGG-xHSoNc-Weg600MYk-aUSs4VZzzTr-_oMoyxz__LitFSCZXhFJ1slY0hpQjt7jWU6MfE9LmYzZ4Su8j4-P_37-hLRBl82YKY7K77Gjn_B-HdnBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121574737</pqid></control><display><type>article</type><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</creator><creatorcontrib>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</creatorcontrib><description>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO 2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O 2 . Instead, trapped O 2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O 2 is removed on discharge, but excess Ni 2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO 2 in contact with the electrolyte in surface degradation through O 2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO 2 degradation. Bulk redox activity in LiNiO 2 proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee02398f</identifier><identifier>PMID: 39398318</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Batteries ; Bulk density ; Cathodes ; Chemistry ; Degradation ; Electrolytes ; Electron density ; Energy charge ; Lithium ; Nickel ; Surface layers ; Surface stability</subject><ispartof>Energy &amp; environmental science, 2024-10, Vol.17 (21), p.8379-8391</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</cites><orcidid>0000-0002-8077-6241 ; 0000-0001-6089-119X ; 0000-0001-8645-3163 ; 0000-0001-9807-7679 ; 0000-0002-3445-353X ; 0000-0002-7892-8963 ; 0000-0002-7415-477X ; 0000-0003-1849-1576 ; 0000-0002-3993-9045 ; 0000-0002-2736-9145 ; 0000-0003-3186-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39398318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Lijin</creatorcontrib><creatorcontrib>Swallow, Jack E. N</creatorcontrib><creatorcontrib>Cong, Peixi</creatorcontrib><creatorcontrib>Zhang, Ruomu</creatorcontrib><creatorcontrib>Poletayev, Andrey D</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>Didwal, Pravin N</creatorcontrib><creatorcontrib>Fraser, Michael W</creatorcontrib><creatorcontrib>Jones, Leanne A. H</creatorcontrib><creatorcontrib>Phelan, Conor M. E</creatorcontrib><creatorcontrib>Ramesh, Namrata</creatorcontrib><creatorcontrib>Harris, Grant</creatorcontrib><creatorcontrib>Sahle, Christoph J</creatorcontrib><creatorcontrib>Ferrer, Pilar</creatorcontrib><creatorcontrib>Grinter, David C</creatorcontrib><creatorcontrib>Bencok, Peter</creatorcontrib><creatorcontrib>Hayama, Shusaku</creatorcontrib><creatorcontrib>Islam, M. Saiful</creatorcontrib><creatorcontrib>House, Robert</creatorcontrib><creatorcontrib>Nellist, Peter D</creatorcontrib><creatorcontrib>Green, Robert J</creatorcontrib><creatorcontrib>Nicholls, Rebecca J</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><title>Energy &amp; environmental science</title><addtitle>Energy Environ Sci</addtitle><description>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO 2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O 2 . Instead, trapped O 2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O 2 is removed on discharge, but excess Ni 2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO 2 in contact with the electrolyte in surface degradation through O 2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO 2 degradation. Bulk redox activity in LiNiO 2 proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</description><subject>Batteries</subject><subject>Bulk density</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Degradation</subject><subject>Electrolytes</subject><subject>Electron density</subject><subject>Energy charge</subject><subject>Lithium</subject><subject>Nickel</subject><subject>Surface layers</subject><subject>Surface stability</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LHDEUB_AgStdue_FeCfRShLH5NcnMqRRdf4DgxUJvIZO82c3u7GRNZor97xtdXauXvJD34SXhi9ARJaeU8Pq7EwCE8bpq99AhVaUoSkXk_ste1myCPqa0JEQyouoPaMLrrDmtDtHvc58G389Hnxa54GbsVjiCCw-4jWGNezCxSGNsjQXsYB6NM4MPPfY97vyw8GM23q6gw-HBO8DWDIvgIH1CB63pEnx-rlP062J2d3ZV3NxeXp_9vClsvn8oLGOysXkVpXDC0rIuBW0ryYBYo0RJQZiGClCSOVHXVcls04gKrDJtPmj4FP3Yzt2MzRqchX6IptOb6Ncm_tXBeP220_uFnoc_mlIhGZU0T_j2PCGG-xHSoNc-Weg600MYk-aUSs4VZzzTr-_oMoyxz__LitFSCZXhFJ1slY0hpQjt7jWU6MfE9LmYzZ4Su8j4-P_37-hLRBl82YKY7K77Gjn_B-HdnBg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>An, Lijin</creator><creator>Swallow, Jack E. N</creator><creator>Cong, Peixi</creator><creator>Zhang, Ruomu</creator><creator>Poletayev, Andrey D</creator><creator>Björklund, Erik</creator><creator>Didwal, Pravin N</creator><creator>Fraser, Michael W</creator><creator>Jones, Leanne A. H</creator><creator>Phelan, Conor M. E</creator><creator>Ramesh, Namrata</creator><creator>Harris, Grant</creator><creator>Sahle, Christoph J</creator><creator>Ferrer, Pilar</creator><creator>Grinter, David C</creator><creator>Bencok, Peter</creator><creator>Hayama, Shusaku</creator><creator>Islam, M. Saiful</creator><creator>House, Robert</creator><creator>Nellist, Peter D</creator><creator>Green, Robert J</creator><creator>Nicholls, Rebecca J</creator><creator>Weatherup, Robert S</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8077-6241</orcidid><orcidid>https://orcid.org/0000-0001-6089-119X</orcidid><orcidid>https://orcid.org/0000-0001-8645-3163</orcidid><orcidid>https://orcid.org/0000-0001-9807-7679</orcidid><orcidid>https://orcid.org/0000-0002-3445-353X</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><orcidid>https://orcid.org/0000-0003-1849-1576</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-2736-9145</orcidid><orcidid>https://orcid.org/0000-0003-3186-9772</orcidid></search><sort><creationdate>20241029</creationdate><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><author>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Bulk density</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Degradation</topic><topic>Electrolytes</topic><topic>Electron density</topic><topic>Energy charge</topic><topic>Lithium</topic><topic>Nickel</topic><topic>Surface layers</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Lijin</creatorcontrib><creatorcontrib>Swallow, Jack E. N</creatorcontrib><creatorcontrib>Cong, Peixi</creatorcontrib><creatorcontrib>Zhang, Ruomu</creatorcontrib><creatorcontrib>Poletayev, Andrey D</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>Didwal, Pravin N</creatorcontrib><creatorcontrib>Fraser, Michael W</creatorcontrib><creatorcontrib>Jones, Leanne A. H</creatorcontrib><creatorcontrib>Phelan, Conor M. E</creatorcontrib><creatorcontrib>Ramesh, Namrata</creatorcontrib><creatorcontrib>Harris, Grant</creatorcontrib><creatorcontrib>Sahle, Christoph J</creatorcontrib><creatorcontrib>Ferrer, Pilar</creatorcontrib><creatorcontrib>Grinter, David C</creatorcontrib><creatorcontrib>Bencok, Peter</creatorcontrib><creatorcontrib>Hayama, Shusaku</creatorcontrib><creatorcontrib>Islam, M. Saiful</creatorcontrib><creatorcontrib>House, Robert</creatorcontrib><creatorcontrib>Nellist, Peter D</creatorcontrib><creatorcontrib>Green, Robert J</creatorcontrib><creatorcontrib>Nicholls, Rebecca J</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Lijin</au><au>Swallow, Jack E. N</au><au>Cong, Peixi</au><au>Zhang, Ruomu</au><au>Poletayev, Andrey D</au><au>Björklund, Erik</au><au>Didwal, Pravin N</au><au>Fraser, Michael W</au><au>Jones, Leanne A. H</au><au>Phelan, Conor M. E</au><au>Ramesh, Namrata</au><au>Harris, Grant</au><au>Sahle, Christoph J</au><au>Ferrer, Pilar</au><au>Grinter, David C</au><au>Bencok, Peter</au><au>Hayama, Shusaku</au><au>Islam, M. Saiful</au><au>House, Robert</au><au>Nellist, Peter D</au><au>Green, Robert J</au><au>Nicholls, Rebecca J</au><au>Weatherup, Robert S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</atitle><jtitle>Energy &amp; environmental science</jtitle><addtitle>Energy Environ Sci</addtitle><date>2024-10-29</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>8379</spage><epage>8391</epage><pages>8379-8391</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO 2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O 2 . Instead, trapped O 2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O 2 is removed on discharge, but excess Ni 2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO 2 in contact with the electrolyte in surface degradation through O 2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO 2 degradation. Bulk redox activity in LiNiO 2 proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39398318</pmid><doi>10.1039/d4ee02398f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8077-6241</orcidid><orcidid>https://orcid.org/0000-0001-6089-119X</orcidid><orcidid>https://orcid.org/0000-0001-8645-3163</orcidid><orcidid>https://orcid.org/0000-0001-9807-7679</orcidid><orcidid>https://orcid.org/0000-0002-3445-353X</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><orcidid>https://orcid.org/0000-0003-1849-1576</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-2736-9145</orcidid><orcidid>https://orcid.org/0000-0003-3186-9772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-10, Vol.17 (21), p.8379-8391
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_3116337323
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Bulk density
Cathodes
Chemistry
Degradation
Electrolytes
Electron density
Energy charge
Lithium
Nickel
Surface layers
Surface stability
title Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20bulk%20redox%20from%20near-surface%20degradation%20in%20lithium%20nickel%20oxide%20cathodes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=An,%20Lijin&rft.date=2024-10-29&rft.volume=17&rft.issue=21&rft.spage=8379&rft.epage=8391&rft.pages=8379-8391&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee02398f&rft_dat=%3Cproquest_cross%3E3121574737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121574737&rft_id=info:pmid/39398318&rfr_iscdi=true