Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes
Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O 2 has been identified within LiNiO 2 at high states of charge, as seen for Li-rich c...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-10, Vol.17 (21), p.8379-8391 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8391 |
---|---|
container_issue | 21 |
container_start_page | 8379 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | An, Lijin Swallow, Jack E. N Cong, Peixi Zhang, Ruomu Poletayev, Andrey D Björklund, Erik Didwal, Pravin N Fraser, Michael W Jones, Leanne A. H Phelan, Conor M. E Ramesh, Namrata Harris, Grant Sahle, Christoph J Ferrer, Pilar Grinter, David C Bencok, Peter Hayama, Shusaku Islam, M. Saiful House, Robert Nellist, Peter D Green, Robert J Nicholls, Rebecca J Weatherup, Robert S |
description | Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O
2
has been identified within LiNiO
2
at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO
2
occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O
2
. Instead, trapped O
2
is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O
2
is removed on discharge, but excess Ni
2+
persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO
2
in contact with the electrolyte in surface degradation through O
2
formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO
2
degradation.
Bulk redox activity in LiNiO
2
proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation. |
doi_str_mv | 10.1039/d4ee02398f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3116337323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121574737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</originalsourceid><addsrcrecordid>eNpd0c9LHDEUB_AgStdue_FeCfRShLH5NcnMqRRdf4DgxUJvIZO82c3u7GRNZor97xtdXauXvJD34SXhi9ARJaeU8Pq7EwCE8bpq99AhVaUoSkXk_ste1myCPqa0JEQyouoPaMLrrDmtDtHvc58G389Hnxa54GbsVjiCCw-4jWGNezCxSGNsjQXsYB6NM4MPPfY97vyw8GM23q6gw-HBO8DWDIvgIH1CB63pEnx-rlP062J2d3ZV3NxeXp_9vClsvn8oLGOysXkVpXDC0rIuBW0ryYBYo0RJQZiGClCSOVHXVcls04gKrDJtPmj4FP3Yzt2MzRqchX6IptOb6Ncm_tXBeP220_uFnoc_mlIhGZU0T_j2PCGG-xHSoNc-Weg600MYk-aUSs4VZzzTr-_oMoyxz__LitFSCZXhFJ1slY0hpQjt7jWU6MfE9LmYzZ4Su8j4-P_37-hLRBl82YKY7K77Gjn_B-HdnBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121574737</pqid></control><display><type>article</type><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</creator><creatorcontrib>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</creatorcontrib><description>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O
2
has been identified within LiNiO
2
at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO
2
occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O
2
. Instead, trapped O
2
is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O
2
is removed on discharge, but excess Ni
2+
persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO
2
in contact with the electrolyte in surface degradation through O
2
formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO
2
degradation.
Bulk redox activity in LiNiO
2
proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee02398f</identifier><identifier>PMID: 39398318</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Batteries ; Bulk density ; Cathodes ; Chemistry ; Degradation ; Electrolytes ; Electron density ; Energy charge ; Lithium ; Nickel ; Surface layers ; Surface stability</subject><ispartof>Energy & environmental science, 2024-10, Vol.17 (21), p.8379-8391</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</cites><orcidid>0000-0002-8077-6241 ; 0000-0001-6089-119X ; 0000-0001-8645-3163 ; 0000-0001-9807-7679 ; 0000-0002-3445-353X ; 0000-0002-7892-8963 ; 0000-0002-7415-477X ; 0000-0003-1849-1576 ; 0000-0002-3993-9045 ; 0000-0002-2736-9145 ; 0000-0003-3186-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39398318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Lijin</creatorcontrib><creatorcontrib>Swallow, Jack E. N</creatorcontrib><creatorcontrib>Cong, Peixi</creatorcontrib><creatorcontrib>Zhang, Ruomu</creatorcontrib><creatorcontrib>Poletayev, Andrey D</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>Didwal, Pravin N</creatorcontrib><creatorcontrib>Fraser, Michael W</creatorcontrib><creatorcontrib>Jones, Leanne A. H</creatorcontrib><creatorcontrib>Phelan, Conor M. E</creatorcontrib><creatorcontrib>Ramesh, Namrata</creatorcontrib><creatorcontrib>Harris, Grant</creatorcontrib><creatorcontrib>Sahle, Christoph J</creatorcontrib><creatorcontrib>Ferrer, Pilar</creatorcontrib><creatorcontrib>Grinter, David C</creatorcontrib><creatorcontrib>Bencok, Peter</creatorcontrib><creatorcontrib>Hayama, Shusaku</creatorcontrib><creatorcontrib>Islam, M. Saiful</creatorcontrib><creatorcontrib>House, Robert</creatorcontrib><creatorcontrib>Nellist, Peter D</creatorcontrib><creatorcontrib>Green, Robert J</creatorcontrib><creatorcontrib>Nicholls, Rebecca J</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><title>Energy & environmental science</title><addtitle>Energy Environ Sci</addtitle><description>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O
2
has been identified within LiNiO
2
at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO
2
occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O
2
. Instead, trapped O
2
is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O
2
is removed on discharge, but excess Ni
2+
persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO
2
in contact with the electrolyte in surface degradation through O
2
formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO
2
degradation.
Bulk redox activity in LiNiO
2
proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</description><subject>Batteries</subject><subject>Bulk density</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Degradation</subject><subject>Electrolytes</subject><subject>Electron density</subject><subject>Energy charge</subject><subject>Lithium</subject><subject>Nickel</subject><subject>Surface layers</subject><subject>Surface stability</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LHDEUB_AgStdue_FeCfRShLH5NcnMqRRdf4DgxUJvIZO82c3u7GRNZor97xtdXauXvJD34SXhi9ARJaeU8Pq7EwCE8bpq99AhVaUoSkXk_ste1myCPqa0JEQyouoPaMLrrDmtDtHvc58G389Hnxa54GbsVjiCCw-4jWGNezCxSGNsjQXsYB6NM4MPPfY97vyw8GM23q6gw-HBO8DWDIvgIH1CB63pEnx-rlP062J2d3ZV3NxeXp_9vClsvn8oLGOysXkVpXDC0rIuBW0ryYBYo0RJQZiGClCSOVHXVcls04gKrDJtPmj4FP3Yzt2MzRqchX6IptOb6Ncm_tXBeP220_uFnoc_mlIhGZU0T_j2PCGG-xHSoNc-Weg600MYk-aUSs4VZzzTr-_oMoyxz__LitFSCZXhFJ1slY0hpQjt7jWU6MfE9LmYzZ4Su8j4-P_37-hLRBl82YKY7K77Gjn_B-HdnBg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>An, Lijin</creator><creator>Swallow, Jack E. N</creator><creator>Cong, Peixi</creator><creator>Zhang, Ruomu</creator><creator>Poletayev, Andrey D</creator><creator>Björklund, Erik</creator><creator>Didwal, Pravin N</creator><creator>Fraser, Michael W</creator><creator>Jones, Leanne A. H</creator><creator>Phelan, Conor M. E</creator><creator>Ramesh, Namrata</creator><creator>Harris, Grant</creator><creator>Sahle, Christoph J</creator><creator>Ferrer, Pilar</creator><creator>Grinter, David C</creator><creator>Bencok, Peter</creator><creator>Hayama, Shusaku</creator><creator>Islam, M. Saiful</creator><creator>House, Robert</creator><creator>Nellist, Peter D</creator><creator>Green, Robert J</creator><creator>Nicholls, Rebecca J</creator><creator>Weatherup, Robert S</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8077-6241</orcidid><orcidid>https://orcid.org/0000-0001-6089-119X</orcidid><orcidid>https://orcid.org/0000-0001-8645-3163</orcidid><orcidid>https://orcid.org/0000-0001-9807-7679</orcidid><orcidid>https://orcid.org/0000-0002-3445-353X</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><orcidid>https://orcid.org/0000-0003-1849-1576</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-2736-9145</orcidid><orcidid>https://orcid.org/0000-0003-3186-9772</orcidid></search><sort><creationdate>20241029</creationdate><title>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</title><author>An, Lijin ; Swallow, Jack E. N ; Cong, Peixi ; Zhang, Ruomu ; Poletayev, Andrey D ; Björklund, Erik ; Didwal, Pravin N ; Fraser, Michael W ; Jones, Leanne A. H ; Phelan, Conor M. E ; Ramesh, Namrata ; Harris, Grant ; Sahle, Christoph J ; Ferrer, Pilar ; Grinter, David C ; Bencok, Peter ; Hayama, Shusaku ; Islam, M. Saiful ; House, Robert ; Nellist, Peter D ; Green, Robert J ; Nicholls, Rebecca J ; Weatherup, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-c226bcc22454d4c159541f862e0ca7451e4ab14e762d499852cbb48ec7afd49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Bulk density</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Degradation</topic><topic>Electrolytes</topic><topic>Electron density</topic><topic>Energy charge</topic><topic>Lithium</topic><topic>Nickel</topic><topic>Surface layers</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Lijin</creatorcontrib><creatorcontrib>Swallow, Jack E. N</creatorcontrib><creatorcontrib>Cong, Peixi</creatorcontrib><creatorcontrib>Zhang, Ruomu</creatorcontrib><creatorcontrib>Poletayev, Andrey D</creatorcontrib><creatorcontrib>Björklund, Erik</creatorcontrib><creatorcontrib>Didwal, Pravin N</creatorcontrib><creatorcontrib>Fraser, Michael W</creatorcontrib><creatorcontrib>Jones, Leanne A. H</creatorcontrib><creatorcontrib>Phelan, Conor M. E</creatorcontrib><creatorcontrib>Ramesh, Namrata</creatorcontrib><creatorcontrib>Harris, Grant</creatorcontrib><creatorcontrib>Sahle, Christoph J</creatorcontrib><creatorcontrib>Ferrer, Pilar</creatorcontrib><creatorcontrib>Grinter, David C</creatorcontrib><creatorcontrib>Bencok, Peter</creatorcontrib><creatorcontrib>Hayama, Shusaku</creatorcontrib><creatorcontrib>Islam, M. Saiful</creatorcontrib><creatorcontrib>House, Robert</creatorcontrib><creatorcontrib>Nellist, Peter D</creatorcontrib><creatorcontrib>Green, Robert J</creatorcontrib><creatorcontrib>Nicholls, Rebecca J</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Lijin</au><au>Swallow, Jack E. N</au><au>Cong, Peixi</au><au>Zhang, Ruomu</au><au>Poletayev, Andrey D</au><au>Björklund, Erik</au><au>Didwal, Pravin N</au><au>Fraser, Michael W</au><au>Jones, Leanne A. H</au><au>Phelan, Conor M. E</au><au>Ramesh, Namrata</au><au>Harris, Grant</au><au>Sahle, Christoph J</au><au>Ferrer, Pilar</au><au>Grinter, David C</au><au>Bencok, Peter</au><au>Hayama, Shusaku</au><au>Islam, M. Saiful</au><au>House, Robert</au><au>Nellist, Peter D</au><au>Green, Robert J</au><au>Nicholls, Rebecca J</au><au>Weatherup, Robert S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes</atitle><jtitle>Energy & environmental science</jtitle><addtitle>Energy Environ Sci</addtitle><date>2024-10-29</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>8379</spage><epage>8391</epage><pages>8379-8391</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O
2
has been identified within LiNiO
2
at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO
2
occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O
2
. Instead, trapped O
2
is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O
2
is removed on discharge, but excess Ni
2+
persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO
2
in contact with the electrolyte in surface degradation through O
2
formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO
2
degradation.
Bulk redox activity in LiNiO
2
proceeds without significant involvement of molecular oxygen, whose formation is instead associated with surface degradation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39398318</pmid><doi>10.1039/d4ee02398f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8077-6241</orcidid><orcidid>https://orcid.org/0000-0001-6089-119X</orcidid><orcidid>https://orcid.org/0000-0001-8645-3163</orcidid><orcidid>https://orcid.org/0000-0001-9807-7679</orcidid><orcidid>https://orcid.org/0000-0002-3445-353X</orcidid><orcidid>https://orcid.org/0000-0002-7892-8963</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><orcidid>https://orcid.org/0000-0003-1849-1576</orcidid><orcidid>https://orcid.org/0000-0002-3993-9045</orcidid><orcidid>https://orcid.org/0000-0002-2736-9145</orcidid><orcidid>https://orcid.org/0000-0003-3186-9772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-10, Vol.17 (21), p.8379-8391 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_miscellaneous_3116337323 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Bulk density Cathodes Chemistry Degradation Electrolytes Electron density Energy charge Lithium Nickel Surface layers Surface stability |
title | Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20bulk%20redox%20from%20near-surface%20degradation%20in%20lithium%20nickel%20oxide%20cathodes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=An,%20Lijin&rft.date=2024-10-29&rft.volume=17&rft.issue=21&rft.spage=8379&rft.epage=8391&rft.pages=8379-8391&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee02398f&rft_dat=%3Cproquest_cross%3E3121574737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121574737&rft_id=info:pmid/39398318&rfr_iscdi=true |