Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-10, Vol.24 (42), p.13422-13430 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13430 |
---|---|
container_issue | 42 |
container_start_page | 13422 |
container_title | Nano letters |
container_volume | 24 |
creator | Tian, Zhuangzhuang Du, Chuankai Xue, Jingze Liu, Yan |
description | Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration. |
doi_str_mv | 10.1021/acs.nanolett.4c04177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3116333092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116333092</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-b3427584adcd7f302c7d8c1f81d3452c6465da3901989aa3a13ff7b580c92f563</originalsourceid><addsrcrecordid>eNp9kElPwzAUhC0EoqXwDxDykUuKtyw-VmUpUqtKFZyD66WkSuJgO6D-e1LS9sjJI2tm3nsfALcYjTEi-EFIP65FbUsdwphJxHCanoEhjimKEs7J-UlnbACuvN8ihDiN0SUYUE6zNGHJEHwsm1BIUZY7uNK-sbUvvjWc7ZSzG13CnyJ8wpVoCgUftbGuEqGwNewUXNg_udKbtux_rYELsal1VwgnMrQiWOevwYURpdc3h3cE3p-f3qazaL58eZ1O5pEgJA3RmjKSxhkTSqrUUERkqjKJTYYVZTGR3bKxEpQjzDMuBBWYGpOu4wxJTkyc0BG473sbZ79a7UNeFV7qshS1tq3PKcYJpRRx0llZb5XOeu-0yRtXVMLtcozyPdu8Y5sf2eYHtl3s7jChXVdanUJHmJ0B9YZ9fGtbV3cH_9_5CwQkiio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116333092</pqid></control><display><type>article</type><title>Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators</title><source>American Chemical Society</source><creator>Tian, Zhuangzhuang ; Du, Chuankai ; Xue, Jingze ; Liu, Yan</creator><creatorcontrib>Tian, Zhuangzhuang ; Du, Chuankai ; Xue, Jingze ; Liu, Yan</creatorcontrib><description>Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c04177</identifier><identifier>PMID: 39387646</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-10, Vol.24 (42), p.13422-13430</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-b3427584adcd7f302c7d8c1f81d3452c6465da3901989aa3a13ff7b580c92f563</cites><orcidid>0000-0002-2523-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c04177$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c04177$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39387646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Zhuangzhuang</creatorcontrib><creatorcontrib>Du, Chuankai</creatorcontrib><creatorcontrib>Xue, Jingze</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.</description><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAUhC0EoqXwDxDykUuKtyw-VmUpUqtKFZyD66WkSuJgO6D-e1LS9sjJI2tm3nsfALcYjTEi-EFIP65FbUsdwphJxHCanoEhjimKEs7J-UlnbACuvN8ihDiN0SUYUE6zNGHJEHwsm1BIUZY7uNK-sbUvvjWc7ZSzG13CnyJ8wpVoCgUftbGuEqGwNewUXNg_udKbtux_rYELsal1VwgnMrQiWOevwYURpdc3h3cE3p-f3qazaL58eZ1O5pEgJA3RmjKSxhkTSqrUUERkqjKJTYYVZTGR3bKxEpQjzDMuBBWYGpOu4wxJTkyc0BG473sbZ79a7UNeFV7qshS1tq3PKcYJpRRx0llZb5XOeu-0yRtXVMLtcozyPdu8Y5sf2eYHtl3s7jChXVdanUJHmJ0B9YZ9fGtbV3cH_9_5CwQkiio</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Tian, Zhuangzhuang</creator><creator>Du, Chuankai</creator><creator>Xue, Jingze</creator><creator>Liu, Yan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></search><sort><creationdate>20241023</creationdate><title>Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators</title><author>Tian, Zhuangzhuang ; Du, Chuankai ; Xue, Jingze ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-b3427584adcd7f302c7d8c1f81d3452c6465da3901989aa3a13ff7b580c92f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhuangzhuang</creatorcontrib><creatorcontrib>Du, Chuankai</creatorcontrib><creatorcontrib>Xue, Jingze</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhuangzhuang</au><au>Du, Chuankai</au><au>Xue, Jingze</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>24</volume><issue>42</issue><spage>13422</spage><epage>13430</epage><pages>13422-13430</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39387646</pmid><doi>10.1021/acs.nanolett.4c04177</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-10, Vol.24 (42), p.13422-13430 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_3116333092 |
source | American Chemical Society |
title | Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Responsive%20Hydrogel%20with%20Rapid%20Deformation%20for%20Motion%20Regulation%20of%20Magnetic%20Actuators&rft.jtitle=Nano%20letters&rft.au=Tian,%20Zhuangzhuang&rft.date=2024-10-23&rft.volume=24&rft.issue=42&rft.spage=13422&rft.epage=13430&rft.pages=13422-13430&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c04177&rft_dat=%3Cproquest_cross%3E3116333092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116333092&rft_id=info:pmid/39387646&rfr_iscdi=true |