Geometric Scaling Law in Real Neuronal Networks
We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously obse...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-09, Vol.133 (13), p.138401, Article 138401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 138401 |
container_title | Physical review letters |
container_volume | 133 |
creator | Zhang, Xin-Ya Moore, Jack Murdoch Ru, Xiaolei Yan, Gang |
description | We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space. |
doi_str_mv | 10.1103/PhysRevLett.133.138401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115770865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115770865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwC1WWbNJ6Yie2lwhBQYoAFVhbrjOGQB7FTqj69wRaEIvRncV9SIeQKdAZAGXzh9dtWOJnjl03A8aGk5zCARkDFSoWAPyQjCllECtKxYichPBGKYUkk8dkxBRTiUphTOYLbGvsfGmjR2uqsnmJcrOJyiZaoqmiO-x92_w83ab17-GUHDlTBTzb64Q8X189Xd7E-f3i9vIijy1I2cUFNRTUKrHpShaYGRTgUuEgRecSwRzPuHKSo-CJsoZLi4KhKmSaFIi8oGxCzne9a99-9Bg6XZfBYlWZBts-aAaQCkFllg7WbGe1vg3Bo9NrX9bGbzVQ_Q1L_4OlB1h6B2sITvcb_arG4i_2S4d9AVuJZ8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115770865</pqid></control><display><type>article</type><title>Geometric Scaling Law in Real Neuronal Networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</creator><creatorcontrib>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</creatorcontrib><description>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.138401</identifier><identifier>PMID: 39392951</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Brain - physiology ; Connectome ; Drosophila - physiology ; Drosophila melanogaster - physiology ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Synapses - physiology</subject><ispartof>Physical review letters, 2024-09, Vol.133 (13), p.138401, Article 138401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</cites><orcidid>0000-0002-7826-3076 ; 0000-0001-6196-2615 ; 0000-0003-1552-3755 ; 0000-0003-0572-9768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39392951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin-Ya</creatorcontrib><creatorcontrib>Moore, Jack Murdoch</creatorcontrib><creatorcontrib>Ru, Xiaolei</creatorcontrib><creatorcontrib>Yan, Gang</creatorcontrib><title>Geometric Scaling Law in Real Neuronal Networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</description><subject>Animals</subject><subject>Brain - physiology</subject><subject>Connectome</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Synapses - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EoqXwC1WWbNJ6Yie2lwhBQYoAFVhbrjOGQB7FTqj69wRaEIvRncV9SIeQKdAZAGXzh9dtWOJnjl03A8aGk5zCARkDFSoWAPyQjCllECtKxYichPBGKYUkk8dkxBRTiUphTOYLbGvsfGmjR2uqsnmJcrOJyiZaoqmiO-x92_w83ab17-GUHDlTBTzb64Q8X189Xd7E-f3i9vIijy1I2cUFNRTUKrHpShaYGRTgUuEgRecSwRzPuHKSo-CJsoZLi4KhKmSaFIi8oGxCzne9a99-9Bg6XZfBYlWZBts-aAaQCkFllg7WbGe1vg3Bo9NrX9bGbzVQ_Q1L_4OlB1h6B2sITvcb_arG4i_2S4d9AVuJZ8c</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Zhang, Xin-Ya</creator><creator>Moore, Jack Murdoch</creator><creator>Ru, Xiaolei</creator><creator>Yan, Gang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7826-3076</orcidid><orcidid>https://orcid.org/0000-0001-6196-2615</orcidid><orcidid>https://orcid.org/0000-0003-1552-3755</orcidid><orcidid>https://orcid.org/0000-0003-0572-9768</orcidid></search><sort><creationdate>20240927</creationdate><title>Geometric Scaling Law in Real Neuronal Networks</title><author>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Brain - physiology</topic><topic>Connectome</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin-Ya</creatorcontrib><creatorcontrib>Moore, Jack Murdoch</creatorcontrib><creatorcontrib>Ru, Xiaolei</creatorcontrib><creatorcontrib>Yan, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin-Ya</au><au>Moore, Jack Murdoch</au><au>Ru, Xiaolei</au><au>Yan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Scaling Law in Real Neuronal Networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-09-27</date><risdate>2024</risdate><volume>133</volume><issue>13</issue><spage>138401</spage><pages>138401-</pages><artnum>138401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</abstract><cop>United States</cop><pmid>39392951</pmid><doi>10.1103/PhysRevLett.133.138401</doi><orcidid>https://orcid.org/0000-0002-7826-3076</orcidid><orcidid>https://orcid.org/0000-0001-6196-2615</orcidid><orcidid>https://orcid.org/0000-0003-1552-3755</orcidid><orcidid>https://orcid.org/0000-0003-0572-9768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2024-09, Vol.133 (13), p.138401, Article 138401 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_3115770865 |
source | MEDLINE; American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Brain - physiology Connectome Drosophila - physiology Drosophila melanogaster - physiology Models, Neurological Nerve Net - physiology Neurons - physiology Synapses - physiology |
title | Geometric Scaling Law in Real Neuronal Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Scaling%20Law%20in%20Real%20Neuronal%20Networks&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20Xin-Ya&rft.date=2024-09-27&rft.volume=133&rft.issue=13&rft.spage=138401&rft.pages=138401-&rft.artnum=138401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.138401&rft_dat=%3Cproquest_cross%3E3115770865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115770865&rft_id=info:pmid/39392951&rfr_iscdi=true |