Geometric Scaling Law in Real Neuronal Networks

We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously obse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-09, Vol.133 (13), p.138401, Article 138401
Hauptverfasser: Zhang, Xin-Ya, Moore, Jack Murdoch, Ru, Xiaolei, Yan, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 138401
container_title Physical review letters
container_volume 133
creator Zhang, Xin-Ya
Moore, Jack Murdoch
Ru, Xiaolei
Yan, Gang
description We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.
doi_str_mv 10.1103/PhysRevLett.133.138401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115770865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115770865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwC1WWbNJ6Yie2lwhBQYoAFVhbrjOGQB7FTqj69wRaEIvRncV9SIeQKdAZAGXzh9dtWOJnjl03A8aGk5zCARkDFSoWAPyQjCllECtKxYichPBGKYUkk8dkxBRTiUphTOYLbGvsfGmjR2uqsnmJcrOJyiZaoqmiO-x92_w83ab17-GUHDlTBTzb64Q8X189Xd7E-f3i9vIijy1I2cUFNRTUKrHpShaYGRTgUuEgRecSwRzPuHKSo-CJsoZLi4KhKmSaFIi8oGxCzne9a99-9Bg6XZfBYlWZBts-aAaQCkFllg7WbGe1vg3Bo9NrX9bGbzVQ_Q1L_4OlB1h6B2sITvcb_arG4i_2S4d9AVuJZ8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115770865</pqid></control><display><type>article</type><title>Geometric Scaling Law in Real Neuronal Networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</creator><creatorcontrib>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</creatorcontrib><description>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.138401</identifier><identifier>PMID: 39392951</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Brain - physiology ; Connectome ; Drosophila - physiology ; Drosophila melanogaster - physiology ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Synapses - physiology</subject><ispartof>Physical review letters, 2024-09, Vol.133 (13), p.138401, Article 138401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</cites><orcidid>0000-0002-7826-3076 ; 0000-0001-6196-2615 ; 0000-0003-1552-3755 ; 0000-0003-0572-9768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39392951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xin-Ya</creatorcontrib><creatorcontrib>Moore, Jack Murdoch</creatorcontrib><creatorcontrib>Ru, Xiaolei</creatorcontrib><creatorcontrib>Yan, Gang</creatorcontrib><title>Geometric Scaling Law in Real Neuronal Networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</description><subject>Animals</subject><subject>Brain - physiology</subject><subject>Connectome</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Synapses - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EoqXwC1WWbNJ6Yie2lwhBQYoAFVhbrjOGQB7FTqj69wRaEIvRncV9SIeQKdAZAGXzh9dtWOJnjl03A8aGk5zCARkDFSoWAPyQjCllECtKxYichPBGKYUkk8dkxBRTiUphTOYLbGvsfGmjR2uqsnmJcrOJyiZaoqmiO-x92_w83ab17-GUHDlTBTzb64Q8X189Xd7E-f3i9vIijy1I2cUFNRTUKrHpShaYGRTgUuEgRecSwRzPuHKSo-CJsoZLi4KhKmSaFIi8oGxCzne9a99-9Bg6XZfBYlWZBts-aAaQCkFllg7WbGe1vg3Bo9NrX9bGbzVQ_Q1L_4OlB1h6B2sITvcb_arG4i_2S4d9AVuJZ8c</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Zhang, Xin-Ya</creator><creator>Moore, Jack Murdoch</creator><creator>Ru, Xiaolei</creator><creator>Yan, Gang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7826-3076</orcidid><orcidid>https://orcid.org/0000-0001-6196-2615</orcidid><orcidid>https://orcid.org/0000-0003-1552-3755</orcidid><orcidid>https://orcid.org/0000-0003-0572-9768</orcidid></search><sort><creationdate>20240927</creationdate><title>Geometric Scaling Law in Real Neuronal Networks</title><author>Zhang, Xin-Ya ; Moore, Jack Murdoch ; Ru, Xiaolei ; Yan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-d0a019b2c5b8de6ae71f57f15eff273f4649f84e7429ca48ce73e9d852dee4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Brain - physiology</topic><topic>Connectome</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin-Ya</creatorcontrib><creatorcontrib>Moore, Jack Murdoch</creatorcontrib><creatorcontrib>Ru, Xiaolei</creatorcontrib><creatorcontrib>Yan, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin-Ya</au><au>Moore, Jack Murdoch</au><au>Ru, Xiaolei</au><au>Yan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Scaling Law in Real Neuronal Networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-09-27</date><risdate>2024</risdate><volume>133</volume><issue>13</issue><spage>138401</spage><pages>138401-</pages><artnum>138401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarse-grained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.</abstract><cop>United States</cop><pmid>39392951</pmid><doi>10.1103/PhysRevLett.133.138401</doi><orcidid>https://orcid.org/0000-0002-7826-3076</orcidid><orcidid>https://orcid.org/0000-0001-6196-2615</orcidid><orcidid>https://orcid.org/0000-0003-1552-3755</orcidid><orcidid>https://orcid.org/0000-0003-0572-9768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-09, Vol.133 (13), p.138401, Article 138401
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_proquest_miscellaneous_3115770865
source MEDLINE; American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Brain - physiology
Connectome
Drosophila - physiology
Drosophila melanogaster - physiology
Models, Neurological
Nerve Net - physiology
Neurons - physiology
Synapses - physiology
title Geometric Scaling Law in Real Neuronal Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Scaling%20Law%20in%20Real%20Neuronal%20Networks&rft.jtitle=Physical%20review%20letters&rft.au=Zhang,%20Xin-Ya&rft.date=2024-09-27&rft.volume=133&rft.issue=13&rft.spage=138401&rft.pages=138401-&rft.artnum=138401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.138401&rft_dat=%3Cproquest_cross%3E3115770865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115770865&rft_id=info:pmid/39392951&rfr_iscdi=true