Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing

Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry and laboratory medicine 2024-11, Vol.62 (12), p.2444-2450
1. Verfasser: Farrell, Christopher J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!