Multivariate anomaly detection models enhance identification of errors in routine clinical chemistry testing
Conventional autoverification rules evaluate analytes independently, potentially missing unusual patterns of results indicative of errors such as serum contamination by collection tube additives. This study assessed whether multivariate anomaly detection algorithms could enhance the detection of suc...
Gespeichert in:
Veröffentlicht in: | Clinical chemistry and laboratory medicine 2024-11, Vol.62 (12), p.2444-2450 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!