Designing Moiré Patterns by Shearing
We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum w...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-10, Vol.18 (42), p.28575-28584 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28584 |
---|---|
container_issue | 42 |
container_start_page | 28575 |
container_title | ACS nano |
container_volume | 18 |
creator | Pantaleón, Pierre A. Sainz-Cruz, Héctor Guinea, Francisco |
description | We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder. |
doi_str_mv | 10.1021/acsnano.4c08302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115500223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115500223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUlOIkja2d3sbnKU-gkVBRW8LZtkUlPaTd1NDj36__xRrjT25mkG3mdemIeQUwpjCoxOTOGtsc04KSDlwPbIkGZcxpDK9_3dLuiAHHm_ABAqVfKQDHjG01RyNSTn1-jrua3tPHpsaoffX9GzaVt01kf5Jnr5QONCeEwOKrP0eNLPEXm7vXmd3sezp7uH6dUsNoyqNs6AYpIihTIXDPICFTDDk4whr1SVCATMQyIF4wA0EyFXWOY5RVkyWVE-Ihfb3rVrPjv0rV7VvsDl0lhsOq85pUIAMMYDOtmihWu8d1jptatXxm00Bf0rR_dydC8nXJz15V2-wnLH_9kIwOUWCJd60XTOhl__rfsB06Fuhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115500223</pqid></control><display><type>article</type><title>Designing Moiré Patterns by Shearing</title><source>American Chemical Society Journals</source><creator>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</creator><creatorcontrib>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</creatorcontrib><description>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08302</identifier><identifier>PMID: 39388637</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-10, Vol.18 (42), p.28575-28584</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</cites><orcidid>0000-0003-1709-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c08302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c08302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pantaleón, Pierre A.</creatorcontrib><creatorcontrib>Sainz-Cruz, Héctor</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><title>Designing Moiré Patterns by Shearing</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK2evUlOIkja2d3sbnKU-gkVBRW8LZtkUlPaTd1NDj36__xRrjT25mkG3mdemIeQUwpjCoxOTOGtsc04KSDlwPbIkGZcxpDK9_3dLuiAHHm_ABAqVfKQDHjG01RyNSTn1-jrua3tPHpsaoffX9GzaVt01kf5Jnr5QONCeEwOKrP0eNLPEXm7vXmd3sezp7uH6dUsNoyqNs6AYpIihTIXDPICFTDDk4whr1SVCATMQyIF4wA0EyFXWOY5RVkyWVE-Ihfb3rVrPjv0rV7VvsDl0lhsOq85pUIAMMYDOtmihWu8d1jptatXxm00Bf0rR_dydC8nXJz15V2-wnLH_9kIwOUWCJd60XTOhl__rfsB06Fuhg</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Pantaleón, Pierre A.</creator><creator>Sainz-Cruz, Héctor</creator><creator>Guinea, Francisco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1709-7868</orcidid></search><sort><creationdate>20241022</creationdate><title>Designing Moiré Patterns by Shearing</title><author>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantaleón, Pierre A.</creatorcontrib><creatorcontrib>Sainz-Cruz, Héctor</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantaleón, Pierre A.</au><au>Sainz-Cruz, Héctor</au><au>Guinea, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Moiré Patterns by Shearing</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>18</volume><issue>42</issue><spage>28575</spage><epage>28584</epage><pages>28575-28584</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39388637</pmid><doi>10.1021/acsnano.4c08302</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1709-7868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-10, Vol.18 (42), p.28575-28584 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3115500223 |
source | American Chemical Society Journals |
title | Designing Moiré Patterns by Shearing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Moire%CC%81%20Patterns%20by%20Shearing&rft.jtitle=ACS%20nano&rft.au=Pantaleo%CC%81n,%20Pierre%20A.&rft.date=2024-10-22&rft.volume=18&rft.issue=42&rft.spage=28575&rft.epage=28584&rft.pages=28575-28584&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08302&rft_dat=%3Cproquest_cross%3E3115500223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115500223&rft_id=info:pmid/39388637&rfr_iscdi=true |