Designing Moiré Patterns by Shearing

We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-10, Vol.18 (42), p.28575-28584
Hauptverfasser: Pantaleón, Pierre A., Sainz-Cruz, Héctor, Guinea, Francisco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28584
container_issue 42
container_start_page 28575
container_title ACS nano
container_volume 18
creator Pantaleón, Pierre A.
Sainz-Cruz, Héctor
Guinea, Francisco
description We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.
doi_str_mv 10.1021/acsnano.4c08302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115500223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115500223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUlOIkja2d3sbnKU-gkVBRW8LZtkUlPaTd1NDj36__xRrjT25mkG3mdemIeQUwpjCoxOTOGtsc04KSDlwPbIkGZcxpDK9_3dLuiAHHm_ABAqVfKQDHjG01RyNSTn1-jrua3tPHpsaoffX9GzaVt01kf5Jnr5QONCeEwOKrP0eNLPEXm7vXmd3sezp7uH6dUsNoyqNs6AYpIihTIXDPICFTDDk4whr1SVCATMQyIF4wA0EyFXWOY5RVkyWVE-Ihfb3rVrPjv0rV7VvsDl0lhsOq85pUIAMMYDOtmihWu8d1jptatXxm00Bf0rR_dydC8nXJz15V2-wnLH_9kIwOUWCJd60XTOhl__rfsB06Fuhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115500223</pqid></control><display><type>article</type><title>Designing Moiré Patterns by Shearing</title><source>American Chemical Society Journals</source><creator>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</creator><creatorcontrib>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</creatorcontrib><description>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08302</identifier><identifier>PMID: 39388637</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-10, Vol.18 (42), p.28575-28584</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</cites><orcidid>0000-0003-1709-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c08302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c08302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pantaleón, Pierre A.</creatorcontrib><creatorcontrib>Sainz-Cruz, Héctor</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><title>Designing Moiré Patterns by Shearing</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK2evUlOIkja2d3sbnKU-gkVBRW8LZtkUlPaTd1NDj36__xRrjT25mkG3mdemIeQUwpjCoxOTOGtsc04KSDlwPbIkGZcxpDK9_3dLuiAHHm_ABAqVfKQDHjG01RyNSTn1-jrua3tPHpsaoffX9GzaVt01kf5Jnr5QONCeEwOKrP0eNLPEXm7vXmd3sezp7uH6dUsNoyqNs6AYpIihTIXDPICFTDDk4whr1SVCATMQyIF4wA0EyFXWOY5RVkyWVE-Ihfb3rVrPjv0rV7VvsDl0lhsOq85pUIAMMYDOtmihWu8d1jptatXxm00Bf0rR_dydC8nXJz15V2-wnLH_9kIwOUWCJd60XTOhl__rfsB06Fuhg</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Pantaleón, Pierre A.</creator><creator>Sainz-Cruz, Héctor</creator><creator>Guinea, Francisco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1709-7868</orcidid></search><sort><creationdate>20241022</creationdate><title>Designing Moiré Patterns by Shearing</title><author>Pantaleón, Pierre A. ; Sainz-Cruz, Héctor ; Guinea, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-901e48e10db520bce702a3492e3f7f45e0ebb52652300195e707edbb1e6d26f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantaleón, Pierre A.</creatorcontrib><creatorcontrib>Sainz-Cruz, Héctor</creatorcontrib><creatorcontrib>Guinea, Francisco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantaleón, Pierre A.</au><au>Sainz-Cruz, Héctor</au><au>Guinea, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Moiré Patterns by Shearing</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>18</volume><issue>42</issue><spage>28575</spage><epage>28584</epage><pages>28575-28584</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39388637</pmid><doi>10.1021/acsnano.4c08302</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1709-7868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-10, Vol.18 (42), p.28575-28584
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3115500223
source American Chemical Society Journals
title Designing Moiré Patterns by Shearing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Moire%CC%81%20Patterns%20by%20Shearing&rft.jtitle=ACS%20nano&rft.au=Pantaleo%CC%81n,%20Pierre%20A.&rft.date=2024-10-22&rft.volume=18&rft.issue=42&rft.spage=28575&rft.epage=28584&rft.pages=28575-28584&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08302&rft_dat=%3Cproquest_cross%3E3115500223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115500223&rft_id=info:pmid/39388637&rfr_iscdi=true