Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation

O3‐type layered oxide cathode exhibits great application potential for practical sodium‐ion batteries, due to its cost‐effectiveness, abundant sodium and manganese resources, and high theoretical capacity. However, the irreversible phase transition, coupled with rapid capacity decay, which is primar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (51), p.e2407615-n/a
Hauptverfasser: Zhang, Guohua, Gao, Yuheng, Fan, Yuxin, Wu, Jianwei, Ma, Jiwei, Zhang, Renyuan, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e2407615
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhang, Guohua
Gao, Yuheng
Fan, Yuxin
Gao, Yuheng
Wu, Jianwei
Ma, Jiwei
Zhang, Renyuan
Huang, Yunhui
description O3‐type layered oxide cathode exhibits great application potential for practical sodium‐ion batteries, due to its cost‐effectiveness, abundant sodium and manganese resources, and high theoretical capacity. However, the irreversible phase transition, coupled with rapid capacity decay, which is primarily attributed to the Jahn‐Teller effect of Mn3+, remains a significant bottleneck for commercial application. Additionally, the sluggish kinetics during the (de)sodiation process require urgent improvement. Herein, an electronic structure regulation strategy is proposed by low‐valence Li/Cu co‐substitution to address these issues. The roles of Li/Cu on the electronic structure, structural evolution, and electrochemical properties in the Na0.96Ni0.22Fe0.2Mn0.5Li0.04Cu0.04O2 (NFMLC) cathode are comprehensively explored through systematic in situ/ex situ characterization techniques and theoretical calculations. The results reveal that this strategy effectively activates more Ni2+/3+ and Fe3+/4+ redox reactions above 2.5 V, while suppressing Mn3+/4+ redox activity below 2.5 V, thereby achieving highly structural reversibility. Therefore, the NFMLC electrode displays excellent long‐term cycling stability (81.5% capacity retention after 2000 cycles at 5 C), and significantly enhanced rate performance (from 45.5% to 80.4% under a ratio of 5 C to 0.5 C). This work provides a valuable perspective on the design of low‐cost, long‐life, and high‐performance layered oxide cathodes for practical sodium‐ion batteries. By optimizing the electronic structure, Li/Cu co‐substitution effectively activates more Ni2+ and Fe3+ ions to participate in charge compensation above 2.5 V, while suppressing the redox activity of Mn3+ below 2.5 V. This strategy effectively mitigates the Jahn‐Teller distortion of Mn3+ and inhibits the irreversible O3–P3 phase transition, realizing long‐term cycle life for the O3‐type layered oxide cathode.
doi_str_mv 10.1002/smll.202407615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115499835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147001579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2985-27388e9400d2e7e2cf9bd7ffd5ec6ce0c0a44447efda670413b95be0d41a1f23</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhi0E4o6DlhJZoqHZZex8OC5hdXxIQSdx20eOM971yYkP2wFCRU_Db-SX4NUei0TDNDPFM8-M9BLylMGaAfCXcXRuzYGXIGpW3SPnrGbFqm64vH-aGZyRRzHeABSMl-IhOStk0TQVFOfkx2vvY7LTjqY90usUZp3moBz9iJ8xRNtbZ9NCvaGtWjDgQK--2gHpRqW9z934kFHl7LeDo_XT7tf3n1sMI90s2iFtrUG63Qc_7_b00qFOwU9Wny5h3t7NTiXrp8fkgVEu4pO7fkG2by63m3er9urt-82rdqW5bKoVF_l5lCXAwFEg10b2gzBmqFDXGkGDKnMJNIOqBZSs6GXVIwwlU8zw4oK8OGpvg_80Y0zdaKNG59SEfo5dwVhVStkUVUaf_4Pe-DlM-blMlQKAVUJman2kdPAxBjTdbbCjCkvHoDuk1B1S6k4p5YVnd9q5H3E44X9iyYA8Al-sw-U_uu76Q9v-lf8GJuSh7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147001579</pqid></control><display><type>article</type><title>Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Guohua ; Gao, Yuheng ; Fan, Yuxin ; Gao, Yuheng ; Wu, Jianwei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</creator><creatorcontrib>Zhang, Guohua ; Gao, Yuheng ; Fan, Yuxin ; Gao, Yuheng ; Wu, Jianwei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</creatorcontrib><description>O3‐type layered oxide cathode exhibits great application potential for practical sodium‐ion batteries, due to its cost‐effectiveness, abundant sodium and manganese resources, and high theoretical capacity. However, the irreversible phase transition, coupled with rapid capacity decay, which is primarily attributed to the Jahn‐Teller effect of Mn3+, remains a significant bottleneck for commercial application. Additionally, the sluggish kinetics during the (de)sodiation process require urgent improvement. Herein, an electronic structure regulation strategy is proposed by low‐valence Li/Cu co‐substitution to address these issues. The roles of Li/Cu on the electronic structure, structural evolution, and electrochemical properties in the Na0.96Ni0.22Fe0.2Mn0.5Li0.04Cu0.04O2 (NFMLC) cathode are comprehensively explored through systematic in situ/ex situ characterization techniques and theoretical calculations. The results reveal that this strategy effectively activates more Ni2+/3+ and Fe3+/4+ redox reactions above 2.5 V, while suppressing Mn3+/4+ redox activity below 2.5 V, thereby achieving highly structural reversibility. Therefore, the NFMLC electrode displays excellent long‐term cycling stability (81.5% capacity retention after 2000 cycles at 5 C), and significantly enhanced rate performance (from 45.5% to 80.4% under a ratio of 5 C to 0.5 C). This work provides a valuable perspective on the design of low‐cost, long‐life, and high‐performance layered oxide cathodes for practical sodium‐ion batteries. By optimizing the electronic structure, Li/Cu co‐substitution effectively activates more Ni2+ and Fe3+ ions to participate in charge compensation above 2.5 V, while suppressing the redox activity of Mn3+ below 2.5 V. This strategy effectively mitigates the Jahn‐Teller distortion of Mn3+ and inhibits the irreversible O3–P3 phase transition, realizing long‐term cycle life for the O3‐type layered oxide cathode.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202407615</identifier><identifier>PMID: 39388503</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Copper ; Electrochemical analysis ; Electronic structure ; electronic structure regulation ; Jahn‐Teller effect of Mn3 ; layered oxide cathode ; Manganese ; Phase transitions ; Redox reactions ; Sodium-ion batteries ; structural reversibility</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (51), p.e2407615-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2985-27388e9400d2e7e2cf9bd7ffd5ec6ce0c0a44447efda670413b95be0d41a1f23</cites><orcidid>0000-0003-1687-1938 ; 0000-0001-5979-5512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202407615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202407615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guohua</creatorcontrib><creatorcontrib>Gao, Yuheng</creatorcontrib><creatorcontrib>Fan, Yuxin</creatorcontrib><creatorcontrib>Gao, Yuheng</creatorcontrib><creatorcontrib>Wu, Jianwei</creatorcontrib><creatorcontrib>Ma, Jiwei</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>O3‐type layered oxide cathode exhibits great application potential for practical sodium‐ion batteries, due to its cost‐effectiveness, abundant sodium and manganese resources, and high theoretical capacity. However, the irreversible phase transition, coupled with rapid capacity decay, which is primarily attributed to the Jahn‐Teller effect of Mn3+, remains a significant bottleneck for commercial application. Additionally, the sluggish kinetics during the (de)sodiation process require urgent improvement. Herein, an electronic structure regulation strategy is proposed by low‐valence Li/Cu co‐substitution to address these issues. The roles of Li/Cu on the electronic structure, structural evolution, and electrochemical properties in the Na0.96Ni0.22Fe0.2Mn0.5Li0.04Cu0.04O2 (NFMLC) cathode are comprehensively explored through systematic in situ/ex situ characterization techniques and theoretical calculations. The results reveal that this strategy effectively activates more Ni2+/3+ and Fe3+/4+ redox reactions above 2.5 V, while suppressing Mn3+/4+ redox activity below 2.5 V, thereby achieving highly structural reversibility. Therefore, the NFMLC electrode displays excellent long‐term cycling stability (81.5% capacity retention after 2000 cycles at 5 C), and significantly enhanced rate performance (from 45.5% to 80.4% under a ratio of 5 C to 0.5 C). This work provides a valuable perspective on the design of low‐cost, long‐life, and high‐performance layered oxide cathodes for practical sodium‐ion batteries. By optimizing the electronic structure, Li/Cu co‐substitution effectively activates more Ni2+ and Fe3+ ions to participate in charge compensation above 2.5 V, while suppressing the redox activity of Mn3+ below 2.5 V. This strategy effectively mitigates the Jahn‐Teller distortion of Mn3+ and inhibits the irreversible O3–P3 phase transition, realizing long‐term cycle life for the O3‐type layered oxide cathode.</description><subject>Cathodes</subject><subject>Copper</subject><subject>Electrochemical analysis</subject><subject>Electronic structure</subject><subject>electronic structure regulation</subject><subject>Jahn‐Teller effect of Mn3</subject><subject>layered oxide cathode</subject><subject>Manganese</subject><subject>Phase transitions</subject><subject>Redox reactions</subject><subject>Sodium-ion batteries</subject><subject>structural reversibility</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT2P1DAQhi0E4o6DlhJZoqHZZex8OC5hdXxIQSdx20eOM971yYkP2wFCRU_Db-SX4NUei0TDNDPFM8-M9BLylMGaAfCXcXRuzYGXIGpW3SPnrGbFqm64vH-aGZyRRzHeABSMl-IhOStk0TQVFOfkx2vvY7LTjqY90usUZp3moBz9iJ8xRNtbZ9NCvaGtWjDgQK--2gHpRqW9z934kFHl7LeDo_XT7tf3n1sMI90s2iFtrUG63Qc_7_b00qFOwU9Wny5h3t7NTiXrp8fkgVEu4pO7fkG2by63m3er9urt-82rdqW5bKoVF_l5lCXAwFEg10b2gzBmqFDXGkGDKnMJNIOqBZSs6GXVIwwlU8zw4oK8OGpvg_80Y0zdaKNG59SEfo5dwVhVStkUVUaf_4Pe-DlM-blMlQKAVUJman2kdPAxBjTdbbCjCkvHoDuk1B1S6k4p5YVnd9q5H3E44X9iyYA8Al-sw-U_uu76Q9v-lf8GJuSh7A</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Guohua</creator><creator>Gao, Yuheng</creator><creator>Fan, Yuxin</creator><creator>Gao, Yuheng</creator><creator>Wu, Jianwei</creator><creator>Ma, Jiwei</creator><creator>Zhang, Renyuan</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid><orcidid>https://orcid.org/0000-0001-5979-5512</orcidid></search><sort><creationdate>20241201</creationdate><title>Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation</title><author>Zhang, Guohua ; Gao, Yuheng ; Fan, Yuxin ; Gao, Yuheng ; Wu, Jianwei ; Ma, Jiwei ; Zhang, Renyuan ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2985-27388e9400d2e7e2cf9bd7ffd5ec6ce0c0a44447efda670413b95be0d41a1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Copper</topic><topic>Electrochemical analysis</topic><topic>Electronic structure</topic><topic>electronic structure regulation</topic><topic>Jahn‐Teller effect of Mn3</topic><topic>layered oxide cathode</topic><topic>Manganese</topic><topic>Phase transitions</topic><topic>Redox reactions</topic><topic>Sodium-ion batteries</topic><topic>structural reversibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guohua</creatorcontrib><creatorcontrib>Gao, Yuheng</creatorcontrib><creatorcontrib>Fan, Yuxin</creatorcontrib><creatorcontrib>Gao, Yuheng</creatorcontrib><creatorcontrib>Wu, Jianwei</creatorcontrib><creatorcontrib>Ma, Jiwei</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guohua</au><au>Gao, Yuheng</au><au>Fan, Yuxin</au><au>Gao, Yuheng</au><au>Wu, Jianwei</au><au>Ma, Jiwei</au><au>Zhang, Renyuan</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>51</issue><spage>e2407615</spage><epage>n/a</epage><pages>e2407615-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>O3‐type layered oxide cathode exhibits great application potential for practical sodium‐ion batteries, due to its cost‐effectiveness, abundant sodium and manganese resources, and high theoretical capacity. However, the irreversible phase transition, coupled with rapid capacity decay, which is primarily attributed to the Jahn‐Teller effect of Mn3+, remains a significant bottleneck for commercial application. Additionally, the sluggish kinetics during the (de)sodiation process require urgent improvement. Herein, an electronic structure regulation strategy is proposed by low‐valence Li/Cu co‐substitution to address these issues. The roles of Li/Cu on the electronic structure, structural evolution, and electrochemical properties in the Na0.96Ni0.22Fe0.2Mn0.5Li0.04Cu0.04O2 (NFMLC) cathode are comprehensively explored through systematic in situ/ex situ characterization techniques and theoretical calculations. The results reveal that this strategy effectively activates more Ni2+/3+ and Fe3+/4+ redox reactions above 2.5 V, while suppressing Mn3+/4+ redox activity below 2.5 V, thereby achieving highly structural reversibility. Therefore, the NFMLC electrode displays excellent long‐term cycling stability (81.5% capacity retention after 2000 cycles at 5 C), and significantly enhanced rate performance (from 45.5% to 80.4% under a ratio of 5 C to 0.5 C). This work provides a valuable perspective on the design of low‐cost, long‐life, and high‐performance layered oxide cathodes for practical sodium‐ion batteries. By optimizing the electronic structure, Li/Cu co‐substitution effectively activates more Ni2+ and Fe3+ ions to participate in charge compensation above 2.5 V, while suppressing the redox activity of Mn3+ below 2.5 V. This strategy effectively mitigates the Jahn‐Teller distortion of Mn3+ and inhibits the irreversible O3–P3 phase transition, realizing long‐term cycle life for the O3‐type layered oxide cathode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39388503</pmid><doi>10.1002/smll.202407615</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1687-1938</orcidid><orcidid>https://orcid.org/0000-0001-5979-5512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (51), p.e2407615-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3115499835
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Copper
Electrochemical analysis
Electronic structure
electronic structure regulation
Jahn‐Teller effect of Mn3
layered oxide cathode
Manganese
Phase transitions
Redox reactions
Sodium-ion batteries
structural reversibility
title Boosting the Structural Reversibility of Layered Oxide Cathode for Realizing Long‐Term Cycle Life Through Electronic Structure Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20Structural%20Reversibility%20of%20Layered%20Oxide%20Cathode%20for%20Realizing%20Long%E2%80%90Term%20Cycle%20Life%20Through%20Electronic%20Structure%20Regulation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Guohua&rft.date=2024-12-01&rft.volume=20&rft.issue=51&rft.spage=e2407615&rft.epage=n/a&rft.pages=e2407615-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202407615&rft_dat=%3Cproquest_cross%3E3147001579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147001579&rft_id=info:pmid/39388503&rfr_iscdi=true