Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid

[Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2024-12, Vol.414, p.131578, Article 131578
Hauptverfasser: Li, Bingqin, He, Jinzhao, Zuo, Kangjia, Xu, Xingran, Zou, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 131578
container_title Bioresource technology
container_volume 414
creator Li, Bingqin
He, Jinzhao
Zuo, Kangjia
Xu, Xingran
Zou, Xiang
description [Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth. The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.
doi_str_mv 10.1016/j.biortech.2024.131578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115094754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852424012823</els_id><sourcerecordid>3115094754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS1ERS8tr1B5ySYX_8ROsqOqSotUiU33lmOPb3yVxMF2WuVJeF1c3RaWsBpp9J05mnMQuqJkTwmVX4773oeYwQx7Rli9p5yKpn2HdrRteMW6Rr5HO9JJUrWC1efoY0pHQginDfuAznnH25rUYod-3c4HPwNEPx9wHgD3W7XEYFeTE150Hp71hv2Mr9cIodfJW79OeFnHcR31nLALEQ_-MIxbWUbvPFi8hHGb9OgN1sZb7CBOMGedfZjxs88DNmE2a4xliSOY8ARxw8HhsfqrukRnTo8JPr3OC_T47fbx5r56-HH3_eb6oTKsaXMFnJG6o7KuLZGgCbVWCEZc11IjG8kc650QPThJKAMNBrh0DQGqW94I4Bfo8-ls-fnnCimryScDY_kNwppUSZW3rHiw_0CpIF3diLqg8oSaGFKK4NQS_aTjpihRL_Wpo3qrT73Up071FeHVq8faT2D_yN76KsDXEwAlkycPUSXjYTZgfUkyKxv8vzx-AyzOsnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115094754</pqid></control><display><type>article</type><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</creator><creatorcontrib>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</creatorcontrib><description>[Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth. The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</description><identifier>ISSN: 0960-8524</identifier><identifier>ISSN: 1873-2976</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2024.131578</identifier><identifier>PMID: 39384045</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acid hydrolysis ; Aureobasidium - metabolism ; Aureobasidium pullulans ; Batch Cell Culture Techniques ; batch fermentation ; biosynthesis ; Biosynthetic Pathways ; By-product ; culture media ; Fermentation ; genes ; L-malic acid ; malate dehydrogenase ; Malate Dehydrogenase - metabolism ; Malates - metabolism ; malic acid ; melanin ; Metabolic Engineering - methods ; NADP - metabolism ; Polymalic acid ; Polymers - chemistry ; Product purity ; pullulan</subject><ispartof>Bioresource technology, 2024-12, Vol.414, p.131578, Article 131578</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</cites><orcidid>0000-0002-5875-1224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852424012823$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39384045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingqin</creatorcontrib><creatorcontrib>He, Jinzhao</creatorcontrib><creatorcontrib>Zuo, Kangjia</creatorcontrib><creatorcontrib>Xu, Xingran</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth. The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</description><subject>acid hydrolysis</subject><subject>Aureobasidium - metabolism</subject><subject>Aureobasidium pullulans</subject><subject>Batch Cell Culture Techniques</subject><subject>batch fermentation</subject><subject>biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>By-product</subject><subject>culture media</subject><subject>Fermentation</subject><subject>genes</subject><subject>L-malic acid</subject><subject>malate dehydrogenase</subject><subject>Malate Dehydrogenase - metabolism</subject><subject>Malates - metabolism</subject><subject>malic acid</subject><subject>melanin</subject><subject>Metabolic Engineering - methods</subject><subject>NADP - metabolism</subject><subject>Polymalic acid</subject><subject>Polymers - chemistry</subject><subject>Product purity</subject><subject>pullulan</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS1ERS8tr1B5ySYX_8ROsqOqSotUiU33lmOPb3yVxMF2WuVJeF1c3RaWsBpp9J05mnMQuqJkTwmVX4773oeYwQx7Rli9p5yKpn2HdrRteMW6Rr5HO9JJUrWC1efoY0pHQginDfuAznnH25rUYod-3c4HPwNEPx9wHgD3W7XEYFeTE150Hp71hv2Mr9cIodfJW79OeFnHcR31nLALEQ_-MIxbWUbvPFi8hHGb9OgN1sZb7CBOMGedfZjxs88DNmE2a4xliSOY8ARxw8HhsfqrukRnTo8JPr3OC_T47fbx5r56-HH3_eb6oTKsaXMFnJG6o7KuLZGgCbVWCEZc11IjG8kc650QPThJKAMNBrh0DQGqW94I4Bfo8-ls-fnnCimryScDY_kNwppUSZW3rHiw_0CpIF3diLqg8oSaGFKK4NQS_aTjpihRL_Wpo3qrT73Up071FeHVq8faT2D_yN76KsDXEwAlkycPUSXjYTZgfUkyKxv8vzx-AyzOsnk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Bingqin</creator><creator>He, Jinzhao</creator><creator>Zuo, Kangjia</creator><creator>Xu, Xingran</creator><creator>Zou, Xiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5875-1224</orcidid></search><sort><creationdate>20241201</creationdate><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><author>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acid hydrolysis</topic><topic>Aureobasidium - metabolism</topic><topic>Aureobasidium pullulans</topic><topic>Batch Cell Culture Techniques</topic><topic>batch fermentation</topic><topic>biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>By-product</topic><topic>culture media</topic><topic>Fermentation</topic><topic>genes</topic><topic>L-malic acid</topic><topic>malate dehydrogenase</topic><topic>Malate Dehydrogenase - metabolism</topic><topic>Malates - metabolism</topic><topic>malic acid</topic><topic>melanin</topic><topic>Metabolic Engineering - methods</topic><topic>NADP - metabolism</topic><topic>Polymalic acid</topic><topic>Polymers - chemistry</topic><topic>Product purity</topic><topic>pullulan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingqin</creatorcontrib><creatorcontrib>He, Jinzhao</creatorcontrib><creatorcontrib>Zuo, Kangjia</creatorcontrib><creatorcontrib>Xu, Xingran</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingqin</au><au>He, Jinzhao</au><au>Zuo, Kangjia</au><au>Xu, Xingran</au><au>Zou, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>414</volume><spage>131578</spage><pages>131578-</pages><artnum>131578</artnum><issn>0960-8524</issn><issn>1873-2976</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth. The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39384045</pmid><doi>10.1016/j.biortech.2024.131578</doi><orcidid>https://orcid.org/0000-0002-5875-1224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2024-12, Vol.414, p.131578, Article 131578
issn 0960-8524
1873-2976
1873-2976
language eng
recordid cdi_proquest_miscellaneous_3115094754
source MEDLINE; Elsevier ScienceDirect Journals
subjects acid hydrolysis
Aureobasidium - metabolism
Aureobasidium pullulans
Batch Cell Culture Techniques
batch fermentation
biosynthesis
Biosynthetic Pathways
By-product
culture media
Fermentation
genes
L-malic acid
malate dehydrogenase
Malate Dehydrogenase - metabolism
Malates - metabolism
malic acid
melanin
Metabolic Engineering - methods
NADP - metabolism
Polymalic acid
Polymers - chemistry
Product purity
pullulan
title Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20by-products%20pathway%20in%20Aureobasidium%20pullulans%20for%20highly%20purified%20polymalic%20acid%20fermentation%20with%20concurrent%20recovery%20of%20l-malic%20acid&rft.jtitle=Bioresource%20technology&rft.au=Li,%20Bingqin&rft.date=2024-12-01&rft.volume=414&rft.spage=131578&rft.pages=131578-&rft.artnum=131578&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2024.131578&rft_dat=%3Cproquest_cross%3E3115094754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115094754&rft_id=info:pmid/39384045&rft_els_id=S0960852424012823&rfr_iscdi=true