Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid
[Display omitted] •The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2024-12, Vol.414, p.131578, Article 131578 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 131578 |
container_title | Bioresource technology |
container_volume | 414 |
creator | Li, Bingqin He, Jinzhao Zuo, Kangjia Xu, Xingran Zou, Xiang |
description | [Display omitted]
•The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth.
The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth. |
doi_str_mv | 10.1016/j.biortech.2024.131578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115094754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852424012823</els_id><sourcerecordid>3115094754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS1ERS8tr1B5ySYX_8ROsqOqSotUiU33lmOPb3yVxMF2WuVJeF1c3RaWsBpp9J05mnMQuqJkTwmVX4773oeYwQx7Rli9p5yKpn2HdrRteMW6Rr5HO9JJUrWC1efoY0pHQginDfuAznnH25rUYod-3c4HPwNEPx9wHgD3W7XEYFeTE150Hp71hv2Mr9cIodfJW79OeFnHcR31nLALEQ_-MIxbWUbvPFi8hHGb9OgN1sZb7CBOMGedfZjxs88DNmE2a4xliSOY8ARxw8HhsfqrukRnTo8JPr3OC_T47fbx5r56-HH3_eb6oTKsaXMFnJG6o7KuLZGgCbVWCEZc11IjG8kc650QPThJKAMNBrh0DQGqW94I4Bfo8-ls-fnnCimryScDY_kNwppUSZW3rHiw_0CpIF3diLqg8oSaGFKK4NQS_aTjpihRL_Wpo3qrT73Up071FeHVq8faT2D_yN76KsDXEwAlkycPUSXjYTZgfUkyKxv8vzx-AyzOsnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115094754</pqid></control><display><type>article</type><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</creator><creatorcontrib>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</creatorcontrib><description>[Display omitted]
•The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth.
The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</description><identifier>ISSN: 0960-8524</identifier><identifier>ISSN: 1873-2976</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2024.131578</identifier><identifier>PMID: 39384045</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acid hydrolysis ; Aureobasidium - metabolism ; Aureobasidium pullulans ; Batch Cell Culture Techniques ; batch fermentation ; biosynthesis ; Biosynthetic Pathways ; By-product ; culture media ; Fermentation ; genes ; L-malic acid ; malate dehydrogenase ; Malate Dehydrogenase - metabolism ; Malates - metabolism ; malic acid ; melanin ; Metabolic Engineering - methods ; NADP - metabolism ; Polymalic acid ; Polymers - chemistry ; Product purity ; pullulan</subject><ispartof>Bioresource technology, 2024-12, Vol.414, p.131578, Article 131578</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</cites><orcidid>0000-0002-5875-1224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852424012823$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39384045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingqin</creatorcontrib><creatorcontrib>He, Jinzhao</creatorcontrib><creatorcontrib>Zuo, Kangjia</creatorcontrib><creatorcontrib>Xu, Xingran</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth.
The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</description><subject>acid hydrolysis</subject><subject>Aureobasidium - metabolism</subject><subject>Aureobasidium pullulans</subject><subject>Batch Cell Culture Techniques</subject><subject>batch fermentation</subject><subject>biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>By-product</subject><subject>culture media</subject><subject>Fermentation</subject><subject>genes</subject><subject>L-malic acid</subject><subject>malate dehydrogenase</subject><subject>Malate Dehydrogenase - metabolism</subject><subject>Malates - metabolism</subject><subject>malic acid</subject><subject>melanin</subject><subject>Metabolic Engineering - methods</subject><subject>NADP - metabolism</subject><subject>Polymalic acid</subject><subject>Polymers - chemistry</subject><subject>Product purity</subject><subject>pullulan</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhS1ERS8tr1B5ySYX_8ROsqOqSotUiU33lmOPb3yVxMF2WuVJeF1c3RaWsBpp9J05mnMQuqJkTwmVX4773oeYwQx7Rli9p5yKpn2HdrRteMW6Rr5HO9JJUrWC1efoY0pHQginDfuAznnH25rUYod-3c4HPwNEPx9wHgD3W7XEYFeTE150Hp71hv2Mr9cIodfJW79OeFnHcR31nLALEQ_-MIxbWUbvPFi8hHGb9OgN1sZb7CBOMGedfZjxs88DNmE2a4xliSOY8ARxw8HhsfqrukRnTo8JPr3OC_T47fbx5r56-HH3_eb6oTKsaXMFnJG6o7KuLZGgCbVWCEZc11IjG8kc650QPThJKAMNBrh0DQGqW94I4Bfo8-ls-fnnCimryScDY_kNwppUSZW3rHiw_0CpIF3diLqg8oSaGFKK4NQS_aTjpihRL_Wpo3qrT73Up071FeHVq8faT2D_yN76KsDXEwAlkycPUSXjYTZgfUkyKxv8vzx-AyzOsnk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Bingqin</creator><creator>He, Jinzhao</creator><creator>Zuo, Kangjia</creator><creator>Xu, Xingran</creator><creator>Zou, Xiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5875-1224</orcidid></search><sort><creationdate>20241201</creationdate><title>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</title><author>Li, Bingqin ; He, Jinzhao ; Zuo, Kangjia ; Xu, Xingran ; Zou, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-e320491644d06ea01dd5520f981c6762f2bf55bef6012eaece36f70e1a8375e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acid hydrolysis</topic><topic>Aureobasidium - metabolism</topic><topic>Aureobasidium pullulans</topic><topic>Batch Cell Culture Techniques</topic><topic>batch fermentation</topic><topic>biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>By-product</topic><topic>culture media</topic><topic>Fermentation</topic><topic>genes</topic><topic>L-malic acid</topic><topic>malate dehydrogenase</topic><topic>Malate Dehydrogenase - metabolism</topic><topic>Malates - metabolism</topic><topic>malic acid</topic><topic>melanin</topic><topic>Metabolic Engineering - methods</topic><topic>NADP - metabolism</topic><topic>Polymalic acid</topic><topic>Polymers - chemistry</topic><topic>Product purity</topic><topic>pullulan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingqin</creatorcontrib><creatorcontrib>He, Jinzhao</creatorcontrib><creatorcontrib>Zuo, Kangjia</creatorcontrib><creatorcontrib>Xu, Xingran</creatorcontrib><creatorcontrib>Zou, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingqin</au><au>He, Jinzhao</au><au>Zuo, Kangjia</au><au>Xu, Xingran</au><au>Zou, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>414</volume><spage>131578</spage><pages>131578-</pages><artnum>131578</artnum><issn>0960-8524</issn><issn>1873-2976</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•The by-products pullulans, melanin and liamocins were eliminated in Aureobasidium. pullulans.•An irreversible trans-hydrogenase transformation was engineered to convert NADPH to NADH.•The engineered strain achieved the highest PMA titer of 194.3 ± 1.14 g/L (∼ 226.0 g/L MA) in a 5-L fermenter.•86.19% of the total L-MA with a purity of 99.7% was recovered from the fermentation broth.
The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39384045</pmid><doi>10.1016/j.biortech.2024.131578</doi><orcidid>https://orcid.org/0000-0002-5875-1224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2024-12, Vol.414, p.131578, Article 131578 |
issn | 0960-8524 1873-2976 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_3115094754 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | acid hydrolysis Aureobasidium - metabolism Aureobasidium pullulans Batch Cell Culture Techniques batch fermentation biosynthesis Biosynthetic Pathways By-product culture media Fermentation genes L-malic acid malate dehydrogenase Malate Dehydrogenase - metabolism Malates - metabolism malic acid melanin Metabolic Engineering - methods NADP - metabolism Polymalic acid Polymers - chemistry Product purity pullulan |
title | Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20by-products%20pathway%20in%20Aureobasidium%20pullulans%20for%20highly%20purified%20polymalic%20acid%20fermentation%20with%20concurrent%20recovery%20of%20l-malic%20acid&rft.jtitle=Bioresource%20technology&rft.au=Li,%20Bingqin&rft.date=2024-12-01&rft.volume=414&rft.spage=131578&rft.pages=131578-&rft.artnum=131578&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2024.131578&rft_dat=%3Cproquest_cross%3E3115094754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115094754&rft_id=info:pmid/39384045&rft_els_id=S0960852424012823&rfr_iscdi=true |