Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling

Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.282 (Pt 1), p.136420, Article 136420
Hauptverfasser: Zhao, Ke, Zhang, Heng, Zhai, Qian, Guan, Xiaoyu, Zhen, Qi, Yang, Ziqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 1
container_start_page 136420
container_title International journal of biological macromolecules
container_volume 282
creator Zhao, Ke
Zhang, Heng
Zhai, Qian
Guan, Xiaoyu
Zhen, Qi
Yang, Ziqiang
description Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollution. To address these issues, a bioinspired polylactic acid/polyethylene glycol @silicon dioxide (PLA/PEG@SiO₂) microfibrous tarpaulin with a dual-layer heterogeneous structure was fabricated via in-situ drafting melt-blowing combined with thermal bonding, inspired by the layered structure of shells. This bioinspired dual-layer heterogeneous structure, with an adjustable heterodyne angle and SiO₂ size gradient, significantly improved the mechanical performance of the PLA/PEG@SiO2 microfibrous tarpaulin, and specifically manifested as an increase in the bursting strength of the sample to 25.5 N. Moreover, PLA/PEG@SiO2 microfibrous tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust. Additionally, its radiative cooling efficiency was notably enhanced, achieving a temperature reduction of ~9.8 °C compared with conventional fabrics, with reflectance of ~88.6 % and emissivity of ~98.3 %. These findings suggest that dual-layered PLA/PEG@SiO₂ microfibrous tarpaulin with multifunctional capabilities is a promising candidate for radiative cooling in outdoor shelters, wearable cooling devices, and energy-efficient building insulation materials. [Display omitted] •Bioinspired PLA/PEG@SiO₂ microfibrous tarpaulin with a dual-layer heterogeneous structure was developed.•This structure features adjustable heterodyne angles and SiO2 size gradients.•This tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust.•High solar emissivity (98.3%) indicate its potential for use in multi-functional outdoor coverings.
doi_str_mv 10.1016/j.ijbiomac.2024.136420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115093909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024072295</els_id><sourcerecordid>3115093909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-326f230accbc2eee1972a9a5cc1fb248554f7bca3b9e5bc57c4b79914f2363e13</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EomXgFSov2WRqx_nzrlDxJ1ViA2vLubmZuSMnHmynNE_Ea-JhWrawsCxb55x7dT7GrqTYSiGb68OWDj35ycK2FGW1laqpSvGMXcqu1YUQQj1nl0JWsuikEhfsVYyH_NvUsnvJLpRWndJSXrJf78nTHI8UcOBH71ZnIRFwCzRcn96Y9qvDGfnOreAdv-GRHIGf-UD-gQbkE0HwI_XBL5EnG452cTTzn5T2fFisK5xdMfA9Jgx-l6NOupjCAmkJyEcfOM57O0PeYLBrogl5sAPZRPfIwfuctnvNXozWRXzzeG_Y948fvt1-Lu6-fvpy--6ugLLtUqHKZiyVsAA9lIgodVtabWsAOfZl1dV1NbY9WNVrrHuoW6j6VmtZZVejUKoNe3vOPQb_Y8GYzEQR0Dn7Z2-jZF3JttRd9x9SWQutdD4b1pyluakYA47mGGiyYTVSmBNPczBPPM2JpznzzMarxxlLP-Hw1_YEMAtuzgLMpdwTBhOB8NRlJgrJDJ7-NeM34dO6Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115093909</pqid></control><display><type>article</type><title>Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Ke ; Zhang, Heng ; Zhai, Qian ; Guan, Xiaoyu ; Zhen, Qi ; Yang, Ziqiang</creator><creatorcontrib>Zhao, Ke ; Zhang, Heng ; Zhai, Qian ; Guan, Xiaoyu ; Zhen, Qi ; Yang, Ziqiang</creatorcontrib><description>Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollution. To address these issues, a bioinspired polylactic acid/polyethylene glycol @silicon dioxide (PLA/PEG@SiO₂) microfibrous tarpaulin with a dual-layer heterogeneous structure was fabricated via in-situ drafting melt-blowing combined with thermal bonding, inspired by the layered structure of shells. This bioinspired dual-layer heterogeneous structure, with an adjustable heterodyne angle and SiO₂ size gradient, significantly improved the mechanical performance of the PLA/PEG@SiO2 microfibrous tarpaulin, and specifically manifested as an increase in the bursting strength of the sample to 25.5 N. Moreover, PLA/PEG@SiO2 microfibrous tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust. Additionally, its radiative cooling efficiency was notably enhanced, achieving a temperature reduction of ~9.8 °C compared with conventional fabrics, with reflectance of ~88.6 % and emissivity of ~98.3 %. These findings suggest that dual-layered PLA/PEG@SiO₂ microfibrous tarpaulin with multifunctional capabilities is a promising candidate for radiative cooling in outdoor shelters, wearable cooling devices, and energy-efficient building insulation materials. [Display omitted] •Bioinspired PLA/PEG@SiO₂ microfibrous tarpaulin with a dual-layer heterogeneous structure was developed.•This structure features adjustable heterodyne angles and SiO2 size gradients.•This tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust.•High solar emissivity (98.3%) indicate its potential for use in multi-functional outdoor coverings.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.136420</identifier><identifier>PMID: 39383911</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anti-pollution ; Bioinspired structure ; Breathable fabric ; cooling ; Daytime radiative cooling ; dust ; energy efficiency ; insulating materials ; Microfibers ; pollution ; Polyesters - chemistry ; polyethylene glycol ; Polyethylene Glycols - chemistry ; polylactic acid ; rain ; reflectance ; silica ; Silicon Dioxide - chemistry ; solar radiation ; Tarpaulin ; Temperature ; Waterproof</subject><ispartof>International journal of biological macromolecules, 2024-12, Vol.282 (Pt 1), p.136420, Article 136420</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-326f230accbc2eee1972a9a5cc1fb248554f7bca3b9e5bc57c4b79914f2363e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.136420$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39383911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhai, Qian</creatorcontrib><creatorcontrib>Guan, Xiaoyu</creatorcontrib><creatorcontrib>Zhen, Qi</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><title>Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollution. To address these issues, a bioinspired polylactic acid/polyethylene glycol @silicon dioxide (PLA/PEG@SiO₂) microfibrous tarpaulin with a dual-layer heterogeneous structure was fabricated via in-situ drafting melt-blowing combined with thermal bonding, inspired by the layered structure of shells. This bioinspired dual-layer heterogeneous structure, with an adjustable heterodyne angle and SiO₂ size gradient, significantly improved the mechanical performance of the PLA/PEG@SiO2 microfibrous tarpaulin, and specifically manifested as an increase in the bursting strength of the sample to 25.5 N. Moreover, PLA/PEG@SiO2 microfibrous tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust. Additionally, its radiative cooling efficiency was notably enhanced, achieving a temperature reduction of ~9.8 °C compared with conventional fabrics, with reflectance of ~88.6 % and emissivity of ~98.3 %. These findings suggest that dual-layered PLA/PEG@SiO₂ microfibrous tarpaulin with multifunctional capabilities is a promising candidate for radiative cooling in outdoor shelters, wearable cooling devices, and energy-efficient building insulation materials. [Display omitted] •Bioinspired PLA/PEG@SiO₂ microfibrous tarpaulin with a dual-layer heterogeneous structure was developed.•This structure features adjustable heterodyne angles and SiO2 size gradients.•This tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust.•High solar emissivity (98.3%) indicate its potential for use in multi-functional outdoor coverings.</description><subject>Anti-pollution</subject><subject>Bioinspired structure</subject><subject>Breathable fabric</subject><subject>cooling</subject><subject>Daytime radiative cooling</subject><subject>dust</subject><subject>energy efficiency</subject><subject>insulating materials</subject><subject>Microfibers</subject><subject>pollution</subject><subject>Polyesters - chemistry</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>polylactic acid</subject><subject>rain</subject><subject>reflectance</subject><subject>silica</subject><subject>Silicon Dioxide - chemistry</subject><subject>solar radiation</subject><subject>Tarpaulin</subject><subject>Temperature</subject><subject>Waterproof</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EomXgFSov2WRqx_nzrlDxJ1ViA2vLubmZuSMnHmynNE_Ea-JhWrawsCxb55x7dT7GrqTYSiGb68OWDj35ycK2FGW1laqpSvGMXcqu1YUQQj1nl0JWsuikEhfsVYyH_NvUsnvJLpRWndJSXrJf78nTHI8UcOBH71ZnIRFwCzRcn96Y9qvDGfnOreAdv-GRHIGf-UD-gQbkE0HwI_XBL5EnG452cTTzn5T2fFisK5xdMfA9Jgx-l6NOupjCAmkJyEcfOM57O0PeYLBrogl5sAPZRPfIwfuctnvNXozWRXzzeG_Y948fvt1-Lu6-fvpy--6ugLLtUqHKZiyVsAA9lIgodVtabWsAOfZl1dV1NbY9WNVrrHuoW6j6VmtZZVejUKoNe3vOPQb_Y8GYzEQR0Dn7Z2-jZF3JttRd9x9SWQutdD4b1pyluakYA47mGGiyYTVSmBNPczBPPM2JpznzzMarxxlLP-Hw1_YEMAtuzgLMpdwTBhOB8NRlJgrJDJ7-NeM34dO6Iw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhao, Ke</creator><creator>Zhang, Heng</creator><creator>Zhai, Qian</creator><creator>Guan, Xiaoyu</creator><creator>Zhen, Qi</creator><creator>Yang, Ziqiang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202412</creationdate><title>Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling</title><author>Zhao, Ke ; Zhang, Heng ; Zhai, Qian ; Guan, Xiaoyu ; Zhen, Qi ; Yang, Ziqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-326f230accbc2eee1972a9a5cc1fb248554f7bca3b9e5bc57c4b79914f2363e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-pollution</topic><topic>Bioinspired structure</topic><topic>Breathable fabric</topic><topic>cooling</topic><topic>Daytime radiative cooling</topic><topic>dust</topic><topic>energy efficiency</topic><topic>insulating materials</topic><topic>Microfibers</topic><topic>pollution</topic><topic>Polyesters - chemistry</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>polylactic acid</topic><topic>rain</topic><topic>reflectance</topic><topic>silica</topic><topic>Silicon Dioxide - chemistry</topic><topic>solar radiation</topic><topic>Tarpaulin</topic><topic>Temperature</topic><topic>Waterproof</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhai, Qian</creatorcontrib><creatorcontrib>Guan, Xiaoyu</creatorcontrib><creatorcontrib>Zhen, Qi</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ke</au><au>Zhang, Heng</au><au>Zhai, Qian</au><au>Guan, Xiaoyu</au><au>Zhen, Qi</au><au>Yang, Ziqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>282</volume><issue>Pt 1</issue><spage>136420</spage><pages>136420-</pages><artnum>136420</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Fibrous tarpaulin serves as the core barrier that protects goods, people, or areas from the adverse impacts of the external environment, such as rain, dust, and sunlight. However, conventional tarpaulins exhibit inadequate mechanical properties, a low solar reflectance, and are susceptible to pollution. To address these issues, a bioinspired polylactic acid/polyethylene glycol @silicon dioxide (PLA/PEG@SiO₂) microfibrous tarpaulin with a dual-layer heterogeneous structure was fabricated via in-situ drafting melt-blowing combined with thermal bonding, inspired by the layered structure of shells. This bioinspired dual-layer heterogeneous structure, with an adjustable heterodyne angle and SiO₂ size gradient, significantly improved the mechanical performance of the PLA/PEG@SiO2 microfibrous tarpaulin, and specifically manifested as an increase in the bursting strength of the sample to 25.5 N. Moreover, PLA/PEG@SiO2 microfibrous tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust. Additionally, its radiative cooling efficiency was notably enhanced, achieving a temperature reduction of ~9.8 °C compared with conventional fabrics, with reflectance of ~88.6 % and emissivity of ~98.3 %. These findings suggest that dual-layered PLA/PEG@SiO₂ microfibrous tarpaulin with multifunctional capabilities is a promising candidate for radiative cooling in outdoor shelters, wearable cooling devices, and energy-efficient building insulation materials. [Display omitted] •Bioinspired PLA/PEG@SiO₂ microfibrous tarpaulin with a dual-layer heterogeneous structure was developed.•This structure features adjustable heterodyne angles and SiO2 size gradients.•This tarpaulin demonstrated excellent anti-pollution properties, effectively repelling liquids and dust.•High solar emissivity (98.3%) indicate its potential for use in multi-functional outdoor coverings.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39383911</pmid><doi>10.1016/j.ijbiomac.2024.136420</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-12, Vol.282 (Pt 1), p.136420, Article 136420
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3115093909
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Anti-pollution
Bioinspired structure
Breathable fabric
cooling
Daytime radiative cooling
dust
energy efficiency
insulating materials
Microfibers
pollution
Polyesters - chemistry
polyethylene glycol
Polyethylene Glycols - chemistry
polylactic acid
rain
reflectance
silica
Silicon Dioxide - chemistry
solar radiation
Tarpaulin
Temperature
Waterproof
title Bioinspired polylactic acid/polyethylene glycol @ silicon dioxide microfibrous tarpaulin with dual-layer heterogeneous structure for enhanced daytime radiative cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%20polylactic%20acid/polyethylene%20glycol%20@%20silicon%20dioxide%20microfibrous%20tarpaulin%20with%20dual-layer%20heterogeneous%20structure%20for%20enhanced%20daytime%20radiative%20cooling&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhao,%20Ke&rft.date=2024-12&rft.volume=282&rft.issue=Pt%201&rft.spage=136420&rft.pages=136420-&rft.artnum=136420&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.136420&rft_dat=%3Cproquest_cross%3E3115093909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115093909&rft_id=info:pmid/39383911&rft_els_id=S0141813024072295&rfr_iscdi=true