Detecting Rhythmic Gene Expression in Single-cell Transcriptomics

An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological rhythms 2024-12, Vol.39 (6), p.581-593
Hauptverfasser: Xu, Bingxian, Ma, Dingbang, Abruzzi, Katharine, Braun, Rosemary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 6
container_start_page 581
container_title Journal of biological rhythms
container_volume 39
creator Xu, Bingxian
Ma, Dingbang
Abruzzi, Katharine
Braun, Rosemary
description An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.
doi_str_mv 10.1177/07487304241273182
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114152939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_07487304241273182</sage_id><sourcerecordid>3114152939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWqs_wIssePGymkmym81JRGsVCoIf55BNkzZlm63JVvTfm1K_xbnMYZ55Z15ehA4AnwBwfoo5qzjFjDAgnEJFNlAPioLkrKCwiXqreb4CdtBujDOMcSkY3UY7VFDOS6A9dH5pOqM75yfZ3fS1m86dzobGm2zwsggmRtf6zPnsPgGNybVpmuwhKB91cIuuTXTcQ1tWNdHsv_c-erwaPFxc56Pb4c3F-SjXlIkur60VuC5ZjW1NqNCWa6WAFEpbIArKMcVWKFqIsaACLLOs1hW3UBdG4HEy1Edna93Fsp6bsTa-C6qRi-DmKrzKVjn5c-LdVE7aZwlQVqSikBSO3xVC-7Q0sZNzF1eWlDftMkoKwKAg6X5Cj36hs3YZfPKXKFqJgtBUfQRrSoc2xmDs5zeA5Soh-SehtHP43cbnxkckCThZA1FNzNfZ_xXfAG4jmQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138952333</pqid></control><display><type>article</type><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</creator><creatorcontrib>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</creatorcontrib><description>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</description><identifier>ISSN: 0748-7304</identifier><identifier>ISSN: 1552-4531</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/07487304241273182</identifier><identifier>PMID: 39377613</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Animals ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Control theory ; Cycles ; Feedback loops ; Gene expression ; Gene Expression Profiling ; Genes ; Humans ; Reproducibility of Results ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; Transcriptome ; Transcriptomics</subject><ispartof>Journal of biological rhythms, 2024-12, Vol.39 (6), p.581-593</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</cites><orcidid>0000-0003-0406-563X ; 0000-0003-3949-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/07487304241273182$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/07487304241273182$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39377613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Bingxian</creatorcontrib><creatorcontrib>Ma, Dingbang</creatorcontrib><creatorcontrib>Abruzzi, Katharine</creatorcontrib><creatorcontrib>Braun, Rosemary</creatorcontrib><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Control theory</subject><subject>Cycles</subject><subject>Feedback loops</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Humans</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>0748-7304</issn><issn>1552-4531</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LAzEQhoMoWqs_wIssePGymkmym81JRGsVCoIf55BNkzZlm63JVvTfm1K_xbnMYZ55Z15ehA4AnwBwfoo5qzjFjDAgnEJFNlAPioLkrKCwiXqreb4CdtBujDOMcSkY3UY7VFDOS6A9dH5pOqM75yfZ3fS1m86dzobGm2zwsggmRtf6zPnsPgGNybVpmuwhKB91cIuuTXTcQ1tWNdHsv_c-erwaPFxc56Pb4c3F-SjXlIkur60VuC5ZjW1NqNCWa6WAFEpbIArKMcVWKFqIsaACLLOs1hW3UBdG4HEy1Edna93Fsp6bsTa-C6qRi-DmKrzKVjn5c-LdVE7aZwlQVqSikBSO3xVC-7Q0sZNzF1eWlDftMkoKwKAg6X5Cj36hs3YZfPKXKFqJgtBUfQRrSoc2xmDs5zeA5Soh-SehtHP43cbnxkckCThZA1FNzNfZ_xXfAG4jmQ4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Xu, Bingxian</creator><creator>Ma, Dingbang</creator><creator>Abruzzi, Katharine</creator><creator>Braun, Rosemary</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0406-563X</orcidid><orcidid>https://orcid.org/0000-0003-3949-3095</orcidid></search><sort><creationdate>20241201</creationdate><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><author>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Control theory</topic><topic>Cycles</topic><topic>Feedback loops</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Humans</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bingxian</creatorcontrib><creatorcontrib>Ma, Dingbang</creatorcontrib><creatorcontrib>Abruzzi, Katharine</creatorcontrib><creatorcontrib>Braun, Rosemary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bingxian</au><au>Ma, Dingbang</au><au>Abruzzi, Katharine</au><au>Braun, Rosemary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>581</spage><epage>593</epage><pages>581-593</pages><issn>0748-7304</issn><issn>1552-4531</issn><eissn>1552-4531</eissn><abstract>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>39377613</pmid><doi>10.1177/07487304241273182</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0406-563X</orcidid><orcidid>https://orcid.org/0000-0003-3949-3095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-7304
ispartof Journal of biological rhythms, 2024-12, Vol.39 (6), p.581-593
issn 0748-7304
1552-4531
1552-4531
language eng
recordid cdi_proquest_miscellaneous_3114152939
source MEDLINE; SAGE Complete A-Z List
subjects Algorithms
Animals
Circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Control theory
Cycles
Feedback loops
Gene expression
Gene Expression Profiling
Genes
Humans
Reproducibility of Results
Ribonucleic acid
RNA
Sequence Analysis, RNA
Single-Cell Analysis - methods
Transcriptome
Transcriptomics
title Detecting Rhythmic Gene Expression in Single-cell Transcriptomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Rhythmic%20Gene%20Expression%20in%20Single-cell%20Transcriptomics&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Xu,%20Bingxian&rft.date=2024-12-01&rft.volume=39&rft.issue=6&rft.spage=581&rft.epage=593&rft.pages=581-593&rft.issn=0748-7304&rft.eissn=1552-4531&rft_id=info:doi/10.1177/07487304241273182&rft_dat=%3Cproquest_pubme%3E3114152939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138952333&rft_id=info:pmid/39377613&rft_sage_id=10.1177_07487304241273182&rfr_iscdi=true