Detecting Rhythmic Gene Expression in Single-cell Transcriptomics
An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-depen...
Gespeichert in:
Veröffentlicht in: | Journal of biological rhythms 2024-12, Vol.39 (6), p.581-593 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 6 |
container_start_page | 581 |
container_title | Journal of biological rhythms |
container_volume | 39 |
creator | Xu, Bingxian Ma, Dingbang Abruzzi, Katharine Braun, Rosemary |
description | An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting. |
doi_str_mv | 10.1177/07487304241273182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114152939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_07487304241273182</sage_id><sourcerecordid>3114152939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWqs_wIssePGymkmym81JRGsVCoIf55BNkzZlm63JVvTfm1K_xbnMYZ55Z15ehA4AnwBwfoo5qzjFjDAgnEJFNlAPioLkrKCwiXqreb4CdtBujDOMcSkY3UY7VFDOS6A9dH5pOqM75yfZ3fS1m86dzobGm2zwsggmRtf6zPnsPgGNybVpmuwhKB91cIuuTXTcQ1tWNdHsv_c-erwaPFxc56Pb4c3F-SjXlIkur60VuC5ZjW1NqNCWa6WAFEpbIArKMcVWKFqIsaACLLOs1hW3UBdG4HEy1Edna93Fsp6bsTa-C6qRi-DmKrzKVjn5c-LdVE7aZwlQVqSikBSO3xVC-7Q0sZNzF1eWlDftMkoKwKAg6X5Cj36hs3YZfPKXKFqJgtBUfQRrSoc2xmDs5zeA5Soh-SehtHP43cbnxkckCThZA1FNzNfZ_xXfAG4jmQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138952333</pqid></control><display><type>article</type><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</creator><creatorcontrib>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</creatorcontrib><description>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</description><identifier>ISSN: 0748-7304</identifier><identifier>ISSN: 1552-4531</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/07487304241273182</identifier><identifier>PMID: 39377613</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Animals ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Control theory ; Cycles ; Feedback loops ; Gene expression ; Gene Expression Profiling ; Genes ; Humans ; Reproducibility of Results ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; Transcriptome ; Transcriptomics</subject><ispartof>Journal of biological rhythms, 2024-12, Vol.39 (6), p.581-593</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</cites><orcidid>0000-0003-0406-563X ; 0000-0003-3949-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/07487304241273182$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/07487304241273182$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39377613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Bingxian</creatorcontrib><creatorcontrib>Ma, Dingbang</creatorcontrib><creatorcontrib>Abruzzi, Katharine</creatorcontrib><creatorcontrib>Braun, Rosemary</creatorcontrib><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Control theory</subject><subject>Cycles</subject><subject>Feedback loops</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Humans</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>0748-7304</issn><issn>1552-4531</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LAzEQhoMoWqs_wIssePGymkmym81JRGsVCoIf55BNkzZlm63JVvTfm1K_xbnMYZ55Z15ehA4AnwBwfoo5qzjFjDAgnEJFNlAPioLkrKCwiXqreb4CdtBujDOMcSkY3UY7VFDOS6A9dH5pOqM75yfZ3fS1m86dzobGm2zwsggmRtf6zPnsPgGNybVpmuwhKB91cIuuTXTcQ1tWNdHsv_c-erwaPFxc56Pb4c3F-SjXlIkur60VuC5ZjW1NqNCWa6WAFEpbIArKMcVWKFqIsaACLLOs1hW3UBdG4HEy1Edna93Fsp6bsTa-C6qRi-DmKrzKVjn5c-LdVE7aZwlQVqSikBSO3xVC-7Q0sZNzF1eWlDftMkoKwKAg6X5Cj36hs3YZfPKXKFqJgtBUfQRrSoc2xmDs5zeA5Soh-SehtHP43cbnxkckCThZA1FNzNfZ_xXfAG4jmQ4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Xu, Bingxian</creator><creator>Ma, Dingbang</creator><creator>Abruzzi, Katharine</creator><creator>Braun, Rosemary</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0406-563X</orcidid><orcidid>https://orcid.org/0000-0003-3949-3095</orcidid></search><sort><creationdate>20241201</creationdate><title>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</title><author>Xu, Bingxian ; Ma, Dingbang ; Abruzzi, Katharine ; Braun, Rosemary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bff90b64b0fb239cf7caa125acf12a16d30f9a359d9391f4f4bc87f1b5e90d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Control theory</topic><topic>Cycles</topic><topic>Feedback loops</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Humans</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bingxian</creatorcontrib><creatorcontrib>Ma, Dingbang</creatorcontrib><creatorcontrib>Abruzzi, Katharine</creatorcontrib><creatorcontrib>Braun, Rosemary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bingxian</au><au>Ma, Dingbang</au><au>Abruzzi, Katharine</au><au>Braun, Rosemary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Rhythmic Gene Expression in Single-cell Transcriptomics</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>581</spage><epage>593</epage><pages>581-593</pages><issn>0748-7304</issn><issn>1552-4531</issn><eissn>1552-4531</eissn><abstract>An autonomous, environmentally synchronizable circadian rhythm is a ubiquitous feature of life on Earth. In multicellular organisms, this rhythm is generated by a transcription-translation feedback loop present in nearly every cell that drives daily expression of thousands of genes in a tissue-dependent manner. Identifying the genes that are under circadian control can elucidate the mechanisms by which physiological processes are coordinated in multicellular organisms. Today, transcriptomic profiling at the single-cell level provides an unprecedented opportunity to understand the function of cell-level clocks. However, while many cycling detection algorithms have been developed to identify genes under circadian control in bulk transcriptomic data, it is not known how best to adapt these algorithms to single-cell RNA seq data. Here, we benchmark commonly used circadian detection methods on their reliability and efficiency when applied to single-cell RNA seq data. Our results provide guidance on adapting existing cycling detection methods to the single-cell domain and elucidate opportunities for more robust and efficient rhythm detection in single-cell data. We also propose a subsampling procedure combined with harmonic regression as an efficient strategy to detect circadian genes in the single-cell setting.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>39377613</pmid><doi>10.1177/07487304241273182</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0406-563X</orcidid><orcidid>https://orcid.org/0000-0003-3949-3095</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-7304 |
ispartof | Journal of biological rhythms, 2024-12, Vol.39 (6), p.581-593 |
issn | 0748-7304 1552-4531 1552-4531 |
language | eng |
recordid | cdi_proquest_miscellaneous_3114152939 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Algorithms Animals Circadian rhythm Circadian Rhythm - genetics Circadian rhythms Control theory Cycles Feedback loops Gene expression Gene Expression Profiling Genes Humans Reproducibility of Results Ribonucleic acid RNA Sequence Analysis, RNA Single-Cell Analysis - methods Transcriptome Transcriptomics |
title | Detecting Rhythmic Gene Expression in Single-cell Transcriptomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Rhythmic%20Gene%20Expression%20in%20Single-cell%20Transcriptomics&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Xu,%20Bingxian&rft.date=2024-12-01&rft.volume=39&rft.issue=6&rft.spage=581&rft.epage=593&rft.pages=581-593&rft.issn=0748-7304&rft.eissn=1552-4531&rft_id=info:doi/10.1177/07487304241273182&rft_dat=%3Cproquest_pubme%3E3114152939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138952333&rft_id=info:pmid/39377613&rft_sage_id=10.1177_07487304241273182&rfr_iscdi=true |