Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics

The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (48), p.e2409632-n/a
Hauptverfasser: Cao, Pengle, Wang, Yu, Yang, Jian, Niu, Shichao, Pan, Xinglong, Lu, Wanheng, Li, Luhong, Xu, Yiming, Cui, Jiabin, Ho, Ghim Wei, Wang, Xiao‐Qiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2409632
container_title Advanced materials (Weinheim)
container_volume 36
creator Cao, Pengle
Wang, Yu
Yang, Jian
Niu, Shichao
Pan, Xinglong
Lu, Wanheng
Li, Luhong
Xu, Yiming
Cui, Jiabin
Ho, Ghim Wei
Wang, Xiao‐Qiao
description The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long‐term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m−3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage‐free toughening mechanism that involves dense long‐chain entanglements and reversible strain‐induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi‐walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m−1) without compromising toughness and resilience. Furthermore, high‐performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long‐term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications. Layered heterogeneous hydrogel fibers (LHHFs) that are tough, resilient, and highly conductive, are manufactured by a microchannel‐integrated wet spinning method. The uniquely combined electromechanical properties stem from the reversible strain‐induced crystallization and the symmetric layered structure with separated electrical and mechanical functional layers. The LHHFs are directly utilized as soft iontronic sensors and epidermal electrodes for wireless full‐body physiological monitoring.
doi_str_mv 10.1002/adma.202409632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114151782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114151782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-98c4f074032fa32f90da9ae143ef8f06065672fec2a401a1463704cb19f9ab9b3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqGwZYkssWHRCb7Nxcs0UFIpCImU9cjjOU5cOeNie6iGFY_AgifkSXBIKRIbFtbRkb7_k49-hJ5TMqeEsNeq36s5I0wQWXH2AM1oyWiRt_IhmhHJy0JWojlBT2K8JiRDpHqMTrjkdc1pM0M_Nlo51TnAazVBgB6vIEHwWxjAjxGvpv6wOHxhOwgR39q0w5sUlB1-fvt-OfSjzpllmGJSztmvKlk_YOMDvvLjdneGP0K0zsKQzrAast1ud27CS39IJvsF8MabhM-tBwc6BT9YHZ-iR0a5CM_u5in6dPH2arkq1h_eXS4X60KzsmGFbLQwpBaEM6Pyk6RXUgEVHExjSD61rGpmQDMlCFVUVLwmQndUGqk62fFT9OrovQn-8wgxtXsbNTinfh_fckoFLWndsIy-_Ae99mMY8u8yxXlZioaWmZofKR18jAFMexPsXoWppaQ99NUe-mrv-8qBF3fasdtDf4__KSgD8gjcWgfTf3Tt4s37xV_5L4IFpDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133554815</pqid></control><display><type>article</type><title>Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Cao, Pengle ; Wang, Yu ; Yang, Jian ; Niu, Shichao ; Pan, Xinglong ; Lu, Wanheng ; Li, Luhong ; Xu, Yiming ; Cui, Jiabin ; Ho, Ghim Wei ; Wang, Xiao‐Qiao</creator><creatorcontrib>Cao, Pengle ; Wang, Yu ; Yang, Jian ; Niu, Shichao ; Pan, Xinglong ; Lu, Wanheng ; Li, Luhong ; Xu, Yiming ; Cui, Jiabin ; Ho, Ghim Wei ; Wang, Xiao‐Qiao</creatorcontrib><description>The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long‐term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m−3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage‐free toughening mechanism that involves dense long‐chain entanglements and reversible strain‐induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi‐walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m−1) without compromising toughness and resilience. Furthermore, high‐performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long‐term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications. Layered heterogeneous hydrogel fibers (LHHFs) that are tough, resilient, and highly conductive, are manufactured by a microchannel‐integrated wet spinning method. The uniquely combined electromechanical properties stem from the reversible strain‐induced crystallization and the symmetric layered structure with separated electrical and mechanical functional layers. The LHHFs are directly utilized as soft iontronic sensors and epidermal electrodes for wireless full‐body physiological monitoring.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202409632</identifier><identifier>PMID: 39377318</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylic resins ; Acrylic Resins - chemistry ; Bioelectricity ; Biomechanics ; conductive ; Crystallization ; Electric Conductivity ; Electrical resistivity ; Electrodes ; Humans ; hydrogel fiber ; Hydrogels ; Hydrogels - chemistry ; Multi wall carbon nanotubes ; Nanotubes, Carbon - chemistry ; Pressure sensors ; Resilience ; soft bioelectronics ; Strain ; strain‐induced crystallization ; tough yet resilient ; Toughness ; Wearable Electronic Devices</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (48), p.e2409632-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-98c4f074032fa32f90da9ae143ef8f06065672fec2a401a1463704cb19f9ab9b3</cites><orcidid>0000-0003-1276-0165 ; 0000-0003-3182-3029 ; 0000-0003-0284-7726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202409632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202409632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39377318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Pengle</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Niu, Shichao</creatorcontrib><creatorcontrib>Pan, Xinglong</creatorcontrib><creatorcontrib>Lu, Wanheng</creatorcontrib><creatorcontrib>Li, Luhong</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Cui, Jiabin</creatorcontrib><creatorcontrib>Ho, Ghim Wei</creatorcontrib><creatorcontrib>Wang, Xiao‐Qiao</creatorcontrib><title>Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long‐term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m−3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage‐free toughening mechanism that involves dense long‐chain entanglements and reversible strain‐induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi‐walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m−1) without compromising toughness and resilience. Furthermore, high‐performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long‐term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications. Layered heterogeneous hydrogel fibers (LHHFs) that are tough, resilient, and highly conductive, are manufactured by a microchannel‐integrated wet spinning method. The uniquely combined electromechanical properties stem from the reversible strain‐induced crystallization and the symmetric layered structure with separated electrical and mechanical functional layers. The LHHFs are directly utilized as soft iontronic sensors and epidermal electrodes for wireless full‐body physiological monitoring.</description><subject>Acrylic resins</subject><subject>Acrylic Resins - chemistry</subject><subject>Bioelectricity</subject><subject>Biomechanics</subject><subject>conductive</subject><subject>Crystallization</subject><subject>Electric Conductivity</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Humans</subject><subject>hydrogel fiber</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Pressure sensors</subject><subject>Resilience</subject><subject>soft bioelectronics</subject><subject>Strain</subject><subject>strain‐induced crystallization</subject><subject>tough yet resilient</subject><subject>Toughness</subject><subject>Wearable Electronic Devices</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhi0EoqGwZYkssWHRCb7Nxcs0UFIpCImU9cjjOU5cOeNie6iGFY_AgifkSXBIKRIbFtbRkb7_k49-hJ5TMqeEsNeq36s5I0wQWXH2AM1oyWiRt_IhmhHJy0JWojlBT2K8JiRDpHqMTrjkdc1pM0M_Nlo51TnAazVBgB6vIEHwWxjAjxGvpv6wOHxhOwgR39q0w5sUlB1-fvt-OfSjzpllmGJSztmvKlk_YOMDvvLjdneGP0K0zsKQzrAast1ud27CS39IJvsF8MabhM-tBwc6BT9YHZ-iR0a5CM_u5in6dPH2arkq1h_eXS4X60KzsmGFbLQwpBaEM6Pyk6RXUgEVHExjSD61rGpmQDMlCFVUVLwmQndUGqk62fFT9OrovQn-8wgxtXsbNTinfh_fckoFLWndsIy-_Ae99mMY8u8yxXlZioaWmZofKR18jAFMexPsXoWppaQ99NUe-mrv-8qBF3fasdtDf4__KSgD8gjcWgfTf3Tt4s37xV_5L4IFpDs</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cao, Pengle</creator><creator>Wang, Yu</creator><creator>Yang, Jian</creator><creator>Niu, Shichao</creator><creator>Pan, Xinglong</creator><creator>Lu, Wanheng</creator><creator>Li, Luhong</creator><creator>Xu, Yiming</creator><creator>Cui, Jiabin</creator><creator>Ho, Ghim Wei</creator><creator>Wang, Xiao‐Qiao</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1276-0165</orcidid><orcidid>https://orcid.org/0000-0003-3182-3029</orcidid><orcidid>https://orcid.org/0000-0003-0284-7726</orcidid></search><sort><creationdate>20241101</creationdate><title>Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics</title><author>Cao, Pengle ; Wang, Yu ; Yang, Jian ; Niu, Shichao ; Pan, Xinglong ; Lu, Wanheng ; Li, Luhong ; Xu, Yiming ; Cui, Jiabin ; Ho, Ghim Wei ; Wang, Xiao‐Qiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-98c4f074032fa32f90da9ae143ef8f06065672fec2a401a1463704cb19f9ab9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylic resins</topic><topic>Acrylic Resins - chemistry</topic><topic>Bioelectricity</topic><topic>Biomechanics</topic><topic>conductive</topic><topic>Crystallization</topic><topic>Electric Conductivity</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Humans</topic><topic>hydrogel fiber</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Pressure sensors</topic><topic>Resilience</topic><topic>soft bioelectronics</topic><topic>Strain</topic><topic>strain‐induced crystallization</topic><topic>tough yet resilient</topic><topic>Toughness</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Pengle</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Niu, Shichao</creatorcontrib><creatorcontrib>Pan, Xinglong</creatorcontrib><creatorcontrib>Lu, Wanheng</creatorcontrib><creatorcontrib>Li, Luhong</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Cui, Jiabin</creatorcontrib><creatorcontrib>Ho, Ghim Wei</creatorcontrib><creatorcontrib>Wang, Xiao‐Qiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Pengle</au><au>Wang, Yu</au><au>Yang, Jian</au><au>Niu, Shichao</au><au>Pan, Xinglong</au><au>Lu, Wanheng</au><au>Li, Luhong</au><au>Xu, Yiming</au><au>Cui, Jiabin</au><au>Ho, Ghim Wei</au><au>Wang, Xiao‐Qiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>48</issue><spage>e2409632</spage><epage>n/a</epage><pages>e2409632-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long‐term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m−3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage‐free toughening mechanism that involves dense long‐chain entanglements and reversible strain‐induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi‐walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m−1) without compromising toughness and resilience. Furthermore, high‐performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long‐term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications. Layered heterogeneous hydrogel fibers (LHHFs) that are tough, resilient, and highly conductive, are manufactured by a microchannel‐integrated wet spinning method. The uniquely combined electromechanical properties stem from the reversible strain‐induced crystallization and the symmetric layered structure with separated electrical and mechanical functional layers. The LHHFs are directly utilized as soft iontronic sensors and epidermal electrodes for wireless full‐body physiological monitoring.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39377318</pmid><doi>10.1002/adma.202409632</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1276-0165</orcidid><orcidid>https://orcid.org/0000-0003-3182-3029</orcidid><orcidid>https://orcid.org/0000-0003-0284-7726</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (48), p.e2409632-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3114151782
source MEDLINE; Wiley Online Library All Journals
subjects Acrylic resins
Acrylic Resins - chemistry
Bioelectricity
Biomechanics
conductive
Crystallization
Electric Conductivity
Electrical resistivity
Electrodes
Humans
hydrogel fiber
Hydrogels
Hydrogels - chemistry
Multi wall carbon nanotubes
Nanotubes, Carbon - chemistry
Pressure sensors
Resilience
soft bioelectronics
Strain
strain‐induced crystallization
tough yet resilient
Toughness
Wearable Electronic Devices
title Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Layered%20Heterogeneous%20Hydrogel%20Fibers%20with%20Strain%E2%80%90Induced%20Crystallization%20for%20Tough,%20Resilient,%20and%20Highly%20Conductive%20Soft%20Bioelectronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cao,%20Pengle&rft.date=2024-11-01&rft.volume=36&rft.issue=48&rft.spage=e2409632&rft.epage=n/a&rft.pages=e2409632-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202409632&rft_dat=%3Cproquest_cross%3E3114151782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133554815&rft_id=info:pmid/39377318&rfr_iscdi=true