Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation

With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-10, Vol.58 (42), p.18788-18799
Hauptverfasser: Du, Bowen, Reda, Ibrahim, Licina, Dusan, Kapsis, Costa, Qi, Dahai, Candanedo, José A., Li, Tianyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18799
container_issue 42
container_start_page 18788
container_title Environmental science & technology
container_volume 58
creator Du, Bowen
Reda, Ibrahim
Licina, Dusan
Kapsis, Costa
Qi, Dahai
Candanedo, José A.
Li, Tianyuan
description With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.
doi_str_mv 10.1021/acs.est.4c02797
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114151305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114151305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-14cccfdb0ad784b513e25eee4a1a8ef52cf6199d58c2044cf6e9cb6e269317bc3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouK6evQa8CNI1kzb9OC51_YCVBdcVbyVNp2uXNNGmPeivN3UFwdMwM8_7zjBDyDmwGTAO11K5Gbp-FinGkyw5IBMQnAUiFXBIJoxBGGRh_HpMTpzbMcZ4yNIJ-Vq4vmll35gtnTcdzd-k2SJ9kj3SxtBHVL7QKKn1J31B0zfadyqaa-lcZ23r6MaNWknXPmik-YrTNRpnOypNRedDb9sfyY3sPYTb1rv4edackqNaaodnv3FKNreL5_w-WK7uHvL5MpCQ8j6ASClVVyWTVZJGpYAQuUDESIJMsRZc1TFkWSVSxVkU-QwzVcbI4yyEpFThlFzufd87-zH4ExVt4xRqLQ3awRUhQATelgmPXvxDd3bojN_OU5zFggkYqas95U_-BwArxj8UY3FU_v4h_AYqI31Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120650515</pqid></control><display><type>article</type><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><source>American Chemical Society Journals</source><creator>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</creator><creatorcontrib>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</creatorcontrib><description>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c02797</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Accumulation ; Air monitoring ; Air quality ; Automation ; Building automation ; Building management systems ; Carbon dioxide ; Carbon dioxide concentration ; Carbon dioxide emissions ; Classrooms ; Concentration time ; Data Science ; Decay ; Decay rate ; Energy consumption ; Equilibrium methods ; Estimates ; Human performance ; Indoor air pollution ; Indoor air quality ; Indoor environments ; Machine learning ; Mass balance ; Mechanical ventilation ; Schools ; Structural health monitoring ; Ventilation</subject><ispartof>Environmental science &amp; technology, 2024-10, Vol.58 (42), p.18788-18799</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 22, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5945-0872 ; 0000-0001-6082-4608 ; 0000-0001-5561-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c02797$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c02797$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Reda, Ibrahim</creatorcontrib><creatorcontrib>Licina, Dusan</creatorcontrib><creatorcontrib>Kapsis, Costa</creatorcontrib><creatorcontrib>Qi, Dahai</creatorcontrib><creatorcontrib>Candanedo, José A.</creatorcontrib><creatorcontrib>Li, Tianyuan</creatorcontrib><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</description><subject>Accumulation</subject><subject>Air monitoring</subject><subject>Air quality</subject><subject>Automation</subject><subject>Building automation</subject><subject>Building management systems</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon dioxide emissions</subject><subject>Classrooms</subject><subject>Concentration time</subject><subject>Data Science</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Energy consumption</subject><subject>Equilibrium methods</subject><subject>Estimates</subject><subject>Human performance</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>Machine learning</subject><subject>Mass balance</subject><subject>Mechanical ventilation</subject><subject>Schools</subject><subject>Structural health monitoring</subject><subject>Ventilation</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMouK6evQa8CNI1kzb9OC51_YCVBdcVbyVNp2uXNNGmPeivN3UFwdMwM8_7zjBDyDmwGTAO11K5Gbp-FinGkyw5IBMQnAUiFXBIJoxBGGRh_HpMTpzbMcZ4yNIJ-Vq4vmll35gtnTcdzd-k2SJ9kj3SxtBHVL7QKKn1J31B0zfadyqaa-lcZ23r6MaNWknXPmik-YrTNRpnOypNRedDb9sfyY3sPYTb1rv4edackqNaaodnv3FKNreL5_w-WK7uHvL5MpCQ8j6ASClVVyWTVZJGpYAQuUDESIJMsRZc1TFkWSVSxVkU-QwzVcbI4yyEpFThlFzufd87-zH4ExVt4xRqLQ3awRUhQATelgmPXvxDd3bojN_OU5zFggkYqas95U_-BwArxj8UY3FU_v4h_AYqI31Z</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Du, Bowen</creator><creator>Reda, Ibrahim</creator><creator>Licina, Dusan</creator><creator>Kapsis, Costa</creator><creator>Qi, Dahai</creator><creator>Candanedo, José A.</creator><creator>Li, Tianyuan</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5945-0872</orcidid><orcidid>https://orcid.org/0000-0001-6082-4608</orcidid><orcidid>https://orcid.org/0000-0001-5561-4390</orcidid></search><sort><creationdate>20241022</creationdate><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><author>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-14cccfdb0ad784b513e25eee4a1a8ef52cf6199d58c2044cf6e9cb6e269317bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Air monitoring</topic><topic>Air quality</topic><topic>Automation</topic><topic>Building automation</topic><topic>Building management systems</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon dioxide emissions</topic><topic>Classrooms</topic><topic>Concentration time</topic><topic>Data Science</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Energy consumption</topic><topic>Equilibrium methods</topic><topic>Estimates</topic><topic>Human performance</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>Machine learning</topic><topic>Mass balance</topic><topic>Mechanical ventilation</topic><topic>Schools</topic><topic>Structural health monitoring</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Reda, Ibrahim</creatorcontrib><creatorcontrib>Licina, Dusan</creatorcontrib><creatorcontrib>Kapsis, Costa</creatorcontrib><creatorcontrib>Qi, Dahai</creatorcontrib><creatorcontrib>Candanedo, José A.</creatorcontrib><creatorcontrib>Li, Tianyuan</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Bowen</au><au>Reda, Ibrahim</au><au>Licina, Dusan</au><au>Kapsis, Costa</au><au>Qi, Dahai</au><au>Candanedo, José A.</au><au>Li, Tianyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>58</volume><issue>42</issue><spage>18788</spage><epage>18799</epage><pages>18788-18799</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c02797</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5945-0872</orcidid><orcidid>https://orcid.org/0000-0001-6082-4608</orcidid><orcidid>https://orcid.org/0000-0001-5561-4390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-10, Vol.58 (42), p.18788-18799
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3114151305
source American Chemical Society Journals
subjects Accumulation
Air monitoring
Air quality
Automation
Building automation
Building management systems
Carbon dioxide
Carbon dioxide concentration
Carbon dioxide emissions
Classrooms
Concentration time
Data Science
Decay
Decay rate
Energy consumption
Equilibrium methods
Estimates
Human performance
Indoor air pollution
Indoor air quality
Indoor environments
Machine learning
Mass balance
Mechanical ventilation
Schools
Structural health monitoring
Ventilation
title Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Air%20Change%20Rate%20in%20Mechanically%20Ventilated%20Classrooms%20Using%20a%20Single%20CO2%20Sensor%20and%20Automated%20Data%20Segmentation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Du,%20Bowen&rft.date=2024-10-22&rft.volume=58&rft.issue=42&rft.spage=18788&rft.epage=18799&rft.pages=18788-18799&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c02797&rft_dat=%3Cproquest_acs_j%3E3114151305%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120650515&rft_id=info:pmid/&rfr_iscdi=true