Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation
With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and buil...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-10, Vol.58 (42), p.18788-18799 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18799 |
---|---|
container_issue | 42 |
container_start_page | 18788 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Du, Bowen Reda, Ibrahim Licina, Dusan Kapsis, Costa Qi, Dahai Candanedo, José A. Li, Tianyuan |
description | With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings. |
doi_str_mv | 10.1021/acs.est.4c02797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114151305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114151305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-14cccfdb0ad784b513e25eee4a1a8ef52cf6199d58c2044cf6e9cb6e269317bc3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouK6evQa8CNI1kzb9OC51_YCVBdcVbyVNp2uXNNGmPeivN3UFwdMwM8_7zjBDyDmwGTAO11K5Gbp-FinGkyw5IBMQnAUiFXBIJoxBGGRh_HpMTpzbMcZ4yNIJ-Vq4vmll35gtnTcdzd-k2SJ9kj3SxtBHVL7QKKn1J31B0zfadyqaa-lcZ23r6MaNWknXPmik-YrTNRpnOypNRedDb9sfyY3sPYTb1rv4edackqNaaodnv3FKNreL5_w-WK7uHvL5MpCQ8j6ASClVVyWTVZJGpYAQuUDESIJMsRZc1TFkWSVSxVkU-QwzVcbI4yyEpFThlFzufd87-zH4ExVt4xRqLQ3awRUhQATelgmPXvxDd3bojN_OU5zFggkYqas95U_-BwArxj8UY3FU_v4h_AYqI31Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120650515</pqid></control><display><type>article</type><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><source>American Chemical Society Journals</source><creator>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</creator><creatorcontrib>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</creatorcontrib><description>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c02797</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Accumulation ; Air monitoring ; Air quality ; Automation ; Building automation ; Building management systems ; Carbon dioxide ; Carbon dioxide concentration ; Carbon dioxide emissions ; Classrooms ; Concentration time ; Data Science ; Decay ; Decay rate ; Energy consumption ; Equilibrium methods ; Estimates ; Human performance ; Indoor air pollution ; Indoor air quality ; Indoor environments ; Machine learning ; Mass balance ; Mechanical ventilation ; Schools ; Structural health monitoring ; Ventilation</subject><ispartof>Environmental science & technology, 2024-10, Vol.58 (42), p.18788-18799</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 22, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5945-0872 ; 0000-0001-6082-4608 ; 0000-0001-5561-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c02797$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c02797$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Reda, Ibrahim</creatorcontrib><creatorcontrib>Licina, Dusan</creatorcontrib><creatorcontrib>Kapsis, Costa</creatorcontrib><creatorcontrib>Qi, Dahai</creatorcontrib><creatorcontrib>Candanedo, José A.</creatorcontrib><creatorcontrib>Li, Tianyuan</creatorcontrib><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</description><subject>Accumulation</subject><subject>Air monitoring</subject><subject>Air quality</subject><subject>Automation</subject><subject>Building automation</subject><subject>Building management systems</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon dioxide emissions</subject><subject>Classrooms</subject><subject>Concentration time</subject><subject>Data Science</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Energy consumption</subject><subject>Equilibrium methods</subject><subject>Estimates</subject><subject>Human performance</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>Machine learning</subject><subject>Mass balance</subject><subject>Mechanical ventilation</subject><subject>Schools</subject><subject>Structural health monitoring</subject><subject>Ventilation</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMouK6evQa8CNI1kzb9OC51_YCVBdcVbyVNp2uXNNGmPeivN3UFwdMwM8_7zjBDyDmwGTAO11K5Gbp-FinGkyw5IBMQnAUiFXBIJoxBGGRh_HpMTpzbMcZ4yNIJ-Vq4vmll35gtnTcdzd-k2SJ9kj3SxtBHVL7QKKn1J31B0zfadyqaa-lcZ23r6MaNWknXPmik-YrTNRpnOypNRedDb9sfyY3sPYTb1rv4edackqNaaodnv3FKNreL5_w-WK7uHvL5MpCQ8j6ASClVVyWTVZJGpYAQuUDESIJMsRZc1TFkWSVSxVkU-QwzVcbI4yyEpFThlFzufd87-zH4ExVt4xRqLQ3awRUhQATelgmPXvxDd3bojN_OU5zFggkYqas95U_-BwArxj8UY3FU_v4h_AYqI31Z</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Du, Bowen</creator><creator>Reda, Ibrahim</creator><creator>Licina, Dusan</creator><creator>Kapsis, Costa</creator><creator>Qi, Dahai</creator><creator>Candanedo, José A.</creator><creator>Li, Tianyuan</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5945-0872</orcidid><orcidid>https://orcid.org/0000-0001-6082-4608</orcidid><orcidid>https://orcid.org/0000-0001-5561-4390</orcidid></search><sort><creationdate>20241022</creationdate><title>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</title><author>Du, Bowen ; Reda, Ibrahim ; Licina, Dusan ; Kapsis, Costa ; Qi, Dahai ; Candanedo, José A. ; Li, Tianyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-14cccfdb0ad784b513e25eee4a1a8ef52cf6199d58c2044cf6e9cb6e269317bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Air monitoring</topic><topic>Air quality</topic><topic>Automation</topic><topic>Building automation</topic><topic>Building management systems</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon dioxide emissions</topic><topic>Classrooms</topic><topic>Concentration time</topic><topic>Data Science</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Energy consumption</topic><topic>Equilibrium methods</topic><topic>Estimates</topic><topic>Human performance</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>Machine learning</topic><topic>Mass balance</topic><topic>Mechanical ventilation</topic><topic>Schools</topic><topic>Structural health monitoring</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Reda, Ibrahim</creatorcontrib><creatorcontrib>Licina, Dusan</creatorcontrib><creatorcontrib>Kapsis, Costa</creatorcontrib><creatorcontrib>Qi, Dahai</creatorcontrib><creatorcontrib>Candanedo, José A.</creatorcontrib><creatorcontrib>Li, Tianyuan</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Bowen</au><au>Reda, Ibrahim</au><au>Licina, Dusan</au><au>Kapsis, Costa</au><au>Qi, Dahai</au><au>Candanedo, José A.</au><au>Li, Tianyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>58</volume><issue>42</issue><spage>18788</spage><epage>18799</epage><pages>18788-18799</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c02797</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5945-0872</orcidid><orcidid>https://orcid.org/0000-0001-6082-4608</orcidid><orcidid>https://orcid.org/0000-0001-5561-4390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-10, Vol.58 (42), p.18788-18799 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3114151305 |
source | American Chemical Society Journals |
subjects | Accumulation Air monitoring Air quality Automation Building automation Building management systems Carbon dioxide Carbon dioxide concentration Carbon dioxide emissions Classrooms Concentration time Data Science Decay Decay rate Energy consumption Equilibrium methods Estimates Human performance Indoor air pollution Indoor air quality Indoor environments Machine learning Mass balance Mechanical ventilation Schools Structural health monitoring Ventilation |
title | Estimating Air Change Rate in Mechanically Ventilated Classrooms Using a Single CO2 Sensor and Automated Data Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Air%20Change%20Rate%20in%20Mechanically%20Ventilated%20Classrooms%20Using%20a%20Single%20CO2%20Sensor%20and%20Automated%20Data%20Segmentation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Du,%20Bowen&rft.date=2024-10-22&rft.volume=58&rft.issue=42&rft.spage=18788&rft.epage=18799&rft.pages=18788-18799&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c02797&rft_dat=%3Cproquest_acs_j%3E3114151305%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120650515&rft_id=info:pmid/&rfr_iscdi=true |