Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation
Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct...
Gespeichert in:
Veröffentlicht in: | Nature immunology 2024-11, Vol.25 (11), p.2043-2056 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2056 |
---|---|
container_issue | 11 |
container_start_page | 2043 |
container_title | Nature immunology |
container_volume | 25 |
creator | Ou, Feiya Liu, Tian-Tian Desai, Pritesh Ferris, Stephen T. Kim, Sunkyung Shen, Haolin Ohara, Ray A. Jo, Suin Chen, Jing Postoak, J. Luke Du, Siling Diamond, Michael S. Murphy, Theresa L. Murphy, Kenneth M. |
description | Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the
Irf8
+32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the
Irf8
+32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing
Irf8
expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
Some enhancers can limit their activities to specific spatial–temporal domains by enhancer suboptimization. Ou et al. find that classical dendritic cell (cDC) development depends on
Irf8
suboptimization, which prevents unwanted IRF8 autoactivation in developing cDC2s while maximizing IRF8 expression in developed cDC1s. |
doi_str_mv | 10.1038/s41590-024-01976-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114151134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114151134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-50f06f5ed1dab828a34247f5ec85134cfb26d210e433bbfebaf3302b608796813</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVqt_wIMEvAiymu_dPUrxo1DopZ5DdnfSpra7Ndml6K83_bCCB08ZMs-8MzwIXVFyTwnPHoKgMicJYSIhNE9Vsj5CZ1SyPGE5VceHmmQ9dB7CnBAqUiVOUY_nPJVSkjM0Ga9at3RfpnVNjRuL2xngobcZvuMseS8w1DNTl-Bx5YLvVm3AFdSVd60rcQmLBV64GswUcICph-k25wKdWLMIcLl_--jt-WkyeE1G45fh4HGUlEyqNpHEEmUlVLQyRcYywwUTafwoM0m5KG3BVMUoAcF5UVgojOWcsEKRLM1VRnkf3e5yV7756CC0eunC5ihTQ9MFzSmNimjMiujNH3TedL6O10WKUaFULmSk2I4qfROCB6tX3i2N_9SU6I1zvXOuo3O9da7Xceh6H90VS6gOIz-SI8B3QIitegr-d_c_sd8zFovQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121466945</pqid></control><display><type>article</type><title>Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ou, Feiya ; Liu, Tian-Tian ; Desai, Pritesh ; Ferris, Stephen T. ; Kim, Sunkyung ; Shen, Haolin ; Ohara, Ray A. ; Jo, Suin ; Chen, Jing ; Postoak, J. Luke ; Du, Siling ; Diamond, Michael S. ; Murphy, Theresa L. ; Murphy, Kenneth M.</creator><creatorcontrib>Ou, Feiya ; Liu, Tian-Tian ; Desai, Pritesh ; Ferris, Stephen T. ; Kim, Sunkyung ; Shen, Haolin ; Ohara, Ray A. ; Jo, Suin ; Chen, Jing ; Postoak, J. Luke ; Du, Siling ; Diamond, Michael S. ; Murphy, Theresa L. ; Murphy, Kenneth M.</creatorcontrib><description>Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the
Irf8
+32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the
Irf8
+32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing
Irf8
expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
Some enhancers can limit their activities to specific spatial–temporal domains by enhancer suboptimization. Ou et al. find that classical dendritic cell (cDC) development depends on
Irf8
suboptimization, which prevents unwanted IRF8 autoactivation in developing cDC2s while maximizing IRF8 expression in developed cDC1s.</description><identifier>ISSN: 1529-2908</identifier><identifier>ISSN: 1529-2916</identifier><identifier>EISSN: 1529-2916</identifier><identifier>DOI: 10.1038/s41590-024-01976-w</identifier><identifier>PMID: 39375550</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/232/2059 ; 631/250/2502/248 ; Affinity ; Biomedical and Life Sciences ; Biomedicine ; Cdc2 protein ; Cell lineage ; Dendritic cells ; Enhancers ; Immune response ; Immunology ; Infectious Diseases ; Interferon regulatory factor ; Phenotypes ; Transcription factors</subject><ispartof>Nature immunology, 2024-11, Vol.25 (11), p.2043-2056</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-50f06f5ed1dab828a34247f5ec85134cfb26d210e433bbfebaf3302b608796813</cites><orcidid>0000-0002-7575-9017 ; 0000-0002-3505-9630 ; 0000-0003-1550-2831 ; 0000-0001-8289-4025 ; 0000-0001-7897-3169 ; 0000-0001-9377-9938 ; 0000-0002-8791-3165 ; 0000-0002-4697-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41590-024-01976-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41590-024-01976-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39375550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Feiya</creatorcontrib><creatorcontrib>Liu, Tian-Tian</creatorcontrib><creatorcontrib>Desai, Pritesh</creatorcontrib><creatorcontrib>Ferris, Stephen T.</creatorcontrib><creatorcontrib>Kim, Sunkyung</creatorcontrib><creatorcontrib>Shen, Haolin</creatorcontrib><creatorcontrib>Ohara, Ray A.</creatorcontrib><creatorcontrib>Jo, Suin</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Postoak, J. Luke</creatorcontrib><creatorcontrib>Du, Siling</creatorcontrib><creatorcontrib>Diamond, Michael S.</creatorcontrib><creatorcontrib>Murphy, Theresa L.</creatorcontrib><creatorcontrib>Murphy, Kenneth M.</creatorcontrib><title>Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation</title><title>Nature immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the
Irf8
+32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the
Irf8
+32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing
Irf8
expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
Some enhancers can limit their activities to specific spatial–temporal domains by enhancer suboptimization. Ou et al. find that classical dendritic cell (cDC) development depends on
Irf8
suboptimization, which prevents unwanted IRF8 autoactivation in developing cDC2s while maximizing IRF8 expression in developed cDC1s.</description><subject>631/250/232/2059</subject><subject>631/250/2502/248</subject><subject>Affinity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cdc2 protein</subject><subject>Cell lineage</subject><subject>Dendritic cells</subject><subject>Enhancers</subject><subject>Immune response</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Interferon regulatory factor</subject><subject>Phenotypes</subject><subject>Transcription factors</subject><issn>1529-2908</issn><issn>1529-2916</issn><issn>1529-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoVqt_wIMEvAiymu_dPUrxo1DopZ5DdnfSpra7Ndml6K83_bCCB08ZMs-8MzwIXVFyTwnPHoKgMicJYSIhNE9Vsj5CZ1SyPGE5VceHmmQ9dB7CnBAqUiVOUY_nPJVSkjM0Ga9at3RfpnVNjRuL2xngobcZvuMseS8w1DNTl-Bx5YLvVm3AFdSVd60rcQmLBV64GswUcICph-k25wKdWLMIcLl_--jt-WkyeE1G45fh4HGUlEyqNpHEEmUlVLQyRcYywwUTafwoM0m5KG3BVMUoAcF5UVgojOWcsEKRLM1VRnkf3e5yV7756CC0eunC5ihTQ9MFzSmNimjMiujNH3TedL6O10WKUaFULmSk2I4qfROCB6tX3i2N_9SU6I1zvXOuo3O9da7Xceh6H90VS6gOIz-SI8B3QIitegr-d_c_sd8zFovQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ou, Feiya</creator><creator>Liu, Tian-Tian</creator><creator>Desai, Pritesh</creator><creator>Ferris, Stephen T.</creator><creator>Kim, Sunkyung</creator><creator>Shen, Haolin</creator><creator>Ohara, Ray A.</creator><creator>Jo, Suin</creator><creator>Chen, Jing</creator><creator>Postoak, J. Luke</creator><creator>Du, Siling</creator><creator>Diamond, Michael S.</creator><creator>Murphy, Theresa L.</creator><creator>Murphy, Kenneth M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7575-9017</orcidid><orcidid>https://orcid.org/0000-0002-3505-9630</orcidid><orcidid>https://orcid.org/0000-0003-1550-2831</orcidid><orcidid>https://orcid.org/0000-0001-8289-4025</orcidid><orcidid>https://orcid.org/0000-0001-7897-3169</orcidid><orcidid>https://orcid.org/0000-0001-9377-9938</orcidid><orcidid>https://orcid.org/0000-0002-8791-3165</orcidid><orcidid>https://orcid.org/0000-0002-4697-9475</orcidid></search><sort><creationdate>20241101</creationdate><title>Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation</title><author>Ou, Feiya ; Liu, Tian-Tian ; Desai, Pritesh ; Ferris, Stephen T. ; Kim, Sunkyung ; Shen, Haolin ; Ohara, Ray A. ; Jo, Suin ; Chen, Jing ; Postoak, J. Luke ; Du, Siling ; Diamond, Michael S. ; Murphy, Theresa L. ; Murphy, Kenneth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-50f06f5ed1dab828a34247f5ec85134cfb26d210e433bbfebaf3302b608796813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/250/232/2059</topic><topic>631/250/2502/248</topic><topic>Affinity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cdc2 protein</topic><topic>Cell lineage</topic><topic>Dendritic cells</topic><topic>Enhancers</topic><topic>Immune response</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Interferon regulatory factor</topic><topic>Phenotypes</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Feiya</creatorcontrib><creatorcontrib>Liu, Tian-Tian</creatorcontrib><creatorcontrib>Desai, Pritesh</creatorcontrib><creatorcontrib>Ferris, Stephen T.</creatorcontrib><creatorcontrib>Kim, Sunkyung</creatorcontrib><creatorcontrib>Shen, Haolin</creatorcontrib><creatorcontrib>Ohara, Ray A.</creatorcontrib><creatorcontrib>Jo, Suin</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Postoak, J. Luke</creatorcontrib><creatorcontrib>Du, Siling</creatorcontrib><creatorcontrib>Diamond, Michael S.</creatorcontrib><creatorcontrib>Murphy, Theresa L.</creatorcontrib><creatorcontrib>Murphy, Kenneth M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Feiya</au><au>Liu, Tian-Tian</au><au>Desai, Pritesh</au><au>Ferris, Stephen T.</au><au>Kim, Sunkyung</au><au>Shen, Haolin</au><au>Ohara, Ray A.</au><au>Jo, Suin</au><au>Chen, Jing</au><au>Postoak, J. Luke</au><au>Du, Siling</au><au>Diamond, Michael S.</au><au>Murphy, Theresa L.</au><au>Murphy, Kenneth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation</atitle><jtitle>Nature immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>2043</spage><epage>2056</epage><pages>2043-2056</pages><issn>1529-2908</issn><issn>1529-2916</issn><eissn>1529-2916</eissn><abstract>Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the
Irf8
+32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the
Irf8
+32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing
Irf8
expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
Some enhancers can limit their activities to specific spatial–temporal domains by enhancer suboptimization. Ou et al. find that classical dendritic cell (cDC) development depends on
Irf8
suboptimization, which prevents unwanted IRF8 autoactivation in developing cDC2s while maximizing IRF8 expression in developed cDC1s.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39375550</pmid><doi>10.1038/s41590-024-01976-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7575-9017</orcidid><orcidid>https://orcid.org/0000-0002-3505-9630</orcidid><orcidid>https://orcid.org/0000-0003-1550-2831</orcidid><orcidid>https://orcid.org/0000-0001-8289-4025</orcidid><orcidid>https://orcid.org/0000-0001-7897-3169</orcidid><orcidid>https://orcid.org/0000-0001-9377-9938</orcidid><orcidid>https://orcid.org/0000-0002-8791-3165</orcidid><orcidid>https://orcid.org/0000-0002-4697-9475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-2908 |
ispartof | Nature immunology, 2024-11, Vol.25 (11), p.2043-2056 |
issn | 1529-2908 1529-2916 1529-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_3114151134 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/250/232/2059 631/250/2502/248 Affinity Biomedical and Life Sciences Biomedicine Cdc2 protein Cell lineage Dendritic cells Enhancers Immune response Immunology Infectious Diseases Interferon regulatory factor Phenotypes Transcription factors |
title | Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20Irf8%20+32-kb%20enhancer%20disrupts%20dendritic%20cell%20lineage%20segregation&rft.jtitle=Nature%20immunology&rft.au=Ou,%20Feiya&rft.date=2024-11-01&rft.volume=25&rft.issue=11&rft.spage=2043&rft.epage=2056&rft.pages=2043-2056&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/s41590-024-01976-w&rft_dat=%3Cproquest_cross%3E3114151134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121466945&rft_id=info:pmid/39375550&rfr_iscdi=true |