Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach
Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-09, Vol.133 (12), p.120603, Article 120603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 120603 |
container_title | Physical review letters |
container_volume | 133 |
creator | Shao, Yuguo Wei, Fuchuan Cheng, Song Liu, Zhengwei |
description | Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this matter, we present a novel polynomial-scale method based on the path integral of observable's backpropagation on Pauli paths (OBPPP). This method efficiently approximates expectation values of operators in variational quantum algorithms with bounded truncation error in the presence of single-qubit Pauli noise. Theoretically, we rigorously prove: (i) For a constant minimal nonzero noise rate γ, OBPPP's time and space complexity exhibit a polynomial relationship with the number of qubits n, the circuit depth L. (ii) For variable γ, in scenarios where more than two nonzero noise factors exist, the complexity remains Poly(n,L) if γ exceeds 1/logL, but grows exponential with L when γ falls below 1/L. Numerically, we conduct classical simulations of IBM's zero-noise extrapolated experimental results on the 127-qubit Eagle processor [Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance, Nature (London) 618, 500 (2023).NATUAS0028-083610.1038/s41586-023-06096-3]. Our method attains higher accuracy and faster runtime compared to the quantum device. Furthermore, our approach allows us to simulate noisy outcomes, enabling accurate reproduction of IBM's unmitigated results that directly correspond to raw experimental observations. Our research reveals the vital role of noise in classical simulations and the derived method is general in computing the expected value for a broad class of quantum circuits and can be applied in the verification of quantum computers. |
doi_str_mv | 10.1103/PhysRevLett.133.120603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3113752966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113752966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-38f710baf1754d217f67179d597bfdf6084ce3081eed9f41f40ebf845a9fa3e63</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk7_wuilN53nNG3SeDfEqTB0ft6GtE22SNvMphX67-3YFK8OB573feEhZIowQwR6tdr0_kV_L3XbzpDSGUbAgB6RMQIXIUeMj8kYgGIoAPiInHn_CQAYsfSUjKignMZRNCaLV1t1pWptvQ4enfV98KEaO_yuVmXw3Km67apgXq5dY9tN5a-DebByZV-7yg7AfLttnMo35-TEqNLri8OdkPfF7dvNfbh8unu4mS_DPKKsDWlqOEKmDPIkLiLkhnHkokgEz0xhGKRxrimkqHUhTIwmBp2ZNE6UMIpqRifkct87zH512reysj7XZalq7TovKSLlSSTYDmV7NG-c9402ctvYSjW9RJA7h_KfQzk4lHuHQ3B62OiyShd_sV9p9AcRhHB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113752966</pqid></control><display><type>article</type><title>Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shao, Yuguo ; Wei, Fuchuan ; Cheng, Song ; Liu, Zhengwei</creator><creatorcontrib>Shao, Yuguo ; Wei, Fuchuan ; Cheng, Song ; Liu, Zhengwei</creatorcontrib><description>Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this matter, we present a novel polynomial-scale method based on the path integral of observable's backpropagation on Pauli paths (OBPPP). This method efficiently approximates expectation values of operators in variational quantum algorithms with bounded truncation error in the presence of single-qubit Pauli noise. Theoretically, we rigorously prove: (i) For a constant minimal nonzero noise rate γ, OBPPP's time and space complexity exhibit a polynomial relationship with the number of qubits n, the circuit depth L. (ii) For variable γ, in scenarios where more than two nonzero noise factors exist, the complexity remains Poly(n,L) if γ exceeds 1/logL, but grows exponential with L when γ falls below 1/L. Numerically, we conduct classical simulations of IBM's zero-noise extrapolated experimental results on the 127-qubit Eagle processor [Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance, Nature (London) 618, 500 (2023).NATUAS0028-083610.1038/s41586-023-06096-3]. Our method attains higher accuracy and faster runtime compared to the quantum device. Furthermore, our approach allows us to simulate noisy outcomes, enabling accurate reproduction of IBM's unmitigated results that directly correspond to raw experimental observations. Our research reveals the vital role of noise in classical simulations and the derived method is general in computing the expected value for a broad class of quantum circuits and can be applied in the verification of quantum computers.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.120603</identifier><identifier>PMID: 39373422</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2024-09, Vol.133 (12), p.120603, Article 120603</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-38f710baf1754d217f67179d597bfdf6084ce3081eed9f41f40ebf845a9fa3e63</cites><orcidid>0009-0001-5983-542X ; 0000-0001-9282-790X ; 0000-0002-7652-9344 ; 0009-0000-6832-7702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39373422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Yuguo</creatorcontrib><creatorcontrib>Wei, Fuchuan</creatorcontrib><creatorcontrib>Cheng, Song</creatorcontrib><creatorcontrib>Liu, Zhengwei</creatorcontrib><title>Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this matter, we present a novel polynomial-scale method based on the path integral of observable's backpropagation on Pauli paths (OBPPP). This method efficiently approximates expectation values of operators in variational quantum algorithms with bounded truncation error in the presence of single-qubit Pauli noise. Theoretically, we rigorously prove: (i) For a constant minimal nonzero noise rate γ, OBPPP's time and space complexity exhibit a polynomial relationship with the number of qubits n, the circuit depth L. (ii) For variable γ, in scenarios where more than two nonzero noise factors exist, the complexity remains Poly(n,L) if γ exceeds 1/logL, but grows exponential with L when γ falls below 1/L. Numerically, we conduct classical simulations of IBM's zero-noise extrapolated experimental results on the 127-qubit Eagle processor [Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance, Nature (London) 618, 500 (2023).NATUAS0028-083610.1038/s41586-023-06096-3]. Our method attains higher accuracy and faster runtime compared to the quantum device. Furthermore, our approach allows us to simulate noisy outcomes, enabling accurate reproduction of IBM's unmitigated results that directly correspond to raw experimental observations. Our research reveals the vital role of noise in classical simulations and the derived method is general in computing the expected value for a broad class of quantum circuits and can be applied in the verification of quantum computers.</description><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobk7_wuilN53nNG3SeDfEqTB0ft6GtE22SNvMphX67-3YFK8OB573feEhZIowQwR6tdr0_kV_L3XbzpDSGUbAgB6RMQIXIUeMj8kYgGIoAPiInHn_CQAYsfSUjKignMZRNCaLV1t1pWptvQ4enfV98KEaO_yuVmXw3Km67apgXq5dY9tN5a-DebByZV-7yg7AfLttnMo35-TEqNLri8OdkPfF7dvNfbh8unu4mS_DPKKsDWlqOEKmDPIkLiLkhnHkokgEz0xhGKRxrimkqHUhTIwmBp2ZNE6UMIpqRifkct87zH512reysj7XZalq7TovKSLlSSTYDmV7NG-c9402ctvYSjW9RJA7h_KfQzk4lHuHQ3B62OiyShd_sV9p9AcRhHB4</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Shao, Yuguo</creator><creator>Wei, Fuchuan</creator><creator>Cheng, Song</creator><creator>Liu, Zhengwei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-5983-542X</orcidid><orcidid>https://orcid.org/0000-0001-9282-790X</orcidid><orcidid>https://orcid.org/0000-0002-7652-9344</orcidid><orcidid>https://orcid.org/0009-0000-6832-7702</orcidid></search><sort><creationdate>20240920</creationdate><title>Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach</title><author>Shao, Yuguo ; Wei, Fuchuan ; Cheng, Song ; Liu, Zhengwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-38f710baf1754d217f67179d597bfdf6084ce3081eed9f41f40ebf845a9fa3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yuguo</creatorcontrib><creatorcontrib>Wei, Fuchuan</creatorcontrib><creatorcontrib>Cheng, Song</creatorcontrib><creatorcontrib>Liu, Zhengwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yuguo</au><au>Wei, Fuchuan</au><au>Cheng, Song</au><au>Liu, Zhengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>133</volume><issue>12</issue><spage>120603</spage><pages>120603-</pages><artnum>120603</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this matter, we present a novel polynomial-scale method based on the path integral of observable's backpropagation on Pauli paths (OBPPP). This method efficiently approximates expectation values of operators in variational quantum algorithms with bounded truncation error in the presence of single-qubit Pauli noise. Theoretically, we rigorously prove: (i) For a constant minimal nonzero noise rate γ, OBPPP's time and space complexity exhibit a polynomial relationship with the number of qubits n, the circuit depth L. (ii) For variable γ, in scenarios where more than two nonzero noise factors exist, the complexity remains Poly(n,L) if γ exceeds 1/logL, but grows exponential with L when γ falls below 1/L. Numerically, we conduct classical simulations of IBM's zero-noise extrapolated experimental results on the 127-qubit Eagle processor [Y. Kim et al., Evidence for the utility of quantum computing before fault tolerance, Nature (London) 618, 500 (2023).NATUAS0028-083610.1038/s41586-023-06096-3]. Our method attains higher accuracy and faster runtime compared to the quantum device. Furthermore, our approach allows us to simulate noisy outcomes, enabling accurate reproduction of IBM's unmitigated results that directly correspond to raw experimental observations. Our research reveals the vital role of noise in classical simulations and the derived method is general in computing the expected value for a broad class of quantum circuits and can be applied in the verification of quantum computers.</abstract><cop>United States</cop><pmid>39373422</pmid><doi>10.1103/PhysRevLett.133.120603</doi><orcidid>https://orcid.org/0009-0001-5983-542X</orcidid><orcidid>https://orcid.org/0000-0001-9282-790X</orcidid><orcidid>https://orcid.org/0000-0002-7652-9344</orcidid><orcidid>https://orcid.org/0009-0000-6832-7702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2024-09, Vol.133 (12), p.120603, Article 120603 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_3113752966 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20Noisy%20Variational%20Quantum%20Algorithms:%20A%20Polynomial%20Approach&rft.jtitle=Physical%20review%20letters&rft.au=Shao,%20Yuguo&rft.date=2024-09-20&rft.volume=133&rft.issue=12&rft.spage=120603&rft.pages=120603-&rft.artnum=120603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.120603&rft_dat=%3Cproquest_cross%3E3113752966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113752966&rft_id=info:pmid/39373422&rfr_iscdi=true |