Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill

Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cser, L., Gulyás, J., Szücs, L., Horváth, A., Árvai, L., Baross, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue
container_start_page 791
container_title
container_volume
creator Cser, L.
Gulyás, J.
Szücs, L.
Horváth, A.
Árvai, L.
Baross, B.
description Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.
doi_str_mv 10.1007/3-540-45517-5_86
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_31136234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31136234</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1696-d96784cf5d053083da2fd8cc2e36b38ca5471de4bda2abbc451a4784cabb3c923</originalsourceid><addsrcrecordid>eNotkMtPAyEQxvGVWGvvHvdgvG0FBvZxNPVRY6vG6JmwLGuwFCpsY_zvZWvn8mXm-80k8yF0QfCUYFxeQ84ZzhnnpMy5qIoDdAZpshvwQzQiBSE5AKuP9galpC6O0QgDpnldMjhFkxi_cCqgtCZ0hF5vTdfpoF2fPRnXxsx32bPeBmmT9D8-rGJmXDbzrg_eZtK12dI70_tg3OcAz32fvXlrh3ZprD1HJ520UU_2OkYf93fvs3m-eHl4nN0s8g0p6iJv66KsmOp4izngClpJu7ZSimooGqiU5KwkrWZNMmTTKMaJZMNGakDVFMbo6v_uJvjvrY69WJuotLXSab-NAgiBggJL4OUelFFJ2wXplIliE8xahl9BMOFlVSds-o_FzfCaDqLxfhWTL4bwBYiUqNhlLYbw4Q-paXHm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31136234</pqid></control><display><type>conference_proceeding</type><title>Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill</title><source>Springer Books</source><creator>Cser, L. ; Gulyás, J. ; Szücs, L. ; Horváth, A. ; Árvai, L. ; Baross, B.</creator><contributor>Monostori, László ; Ali, Moonis ; Váncza, József</contributor><creatorcontrib>Cser, L. ; Gulyás, J. ; Szücs, L. ; Horváth, A. ; Árvai, L. ; Baross, B. ; Monostori, László ; Ali, Moonis ; Váncza, József</creatorcontrib><description>Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540422196</identifier><identifier>ISBN: 9783540422198</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540455175</identifier><identifier>EISBN: 9783540455172</identifier><identifier>DOI: 10.1007/3-540-45517-5_86</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial Neural Network ; Artificial Neural Network Model ; Component Plane ; Computer science; control theory; systems ; Connectionism. Neural networks ; Data Mining Tool ; Exact sciences and technology ; Irrelevant Factor ; Learning and adaptive systems</subject><ispartof>Engineering of Intelligent Systems, 2001, p.791-796</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45517-5_86$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45517-5_86$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1015789$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Monostori, László</contributor><contributor>Ali, Moonis</contributor><contributor>Váncza, József</contributor><creatorcontrib>Cser, L.</creatorcontrib><creatorcontrib>Gulyás, J.</creatorcontrib><creatorcontrib>Szücs, L.</creatorcontrib><creatorcontrib>Horváth, A.</creatorcontrib><creatorcontrib>Árvai, L.</creatorcontrib><creatorcontrib>Baross, B.</creatorcontrib><title>Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill</title><title>Engineering of Intelligent Systems</title><description>Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial Neural Network</subject><subject>Artificial Neural Network Model</subject><subject>Component Plane</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Data Mining Tool</subject><subject>Exact sciences and technology</subject><subject>Irrelevant Factor</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540422196</isbn><isbn>9783540422198</isbn><isbn>3540455175</isbn><isbn>9783540455172</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtPAyEQxvGVWGvvHvdgvG0FBvZxNPVRY6vG6JmwLGuwFCpsY_zvZWvn8mXm-80k8yF0QfCUYFxeQ84ZzhnnpMy5qIoDdAZpshvwQzQiBSE5AKuP9galpC6O0QgDpnldMjhFkxi_cCqgtCZ0hF5vTdfpoF2fPRnXxsx32bPeBmmT9D8-rGJmXDbzrg_eZtK12dI70_tg3OcAz32fvXlrh3ZprD1HJ520UU_2OkYf93fvs3m-eHl4nN0s8g0p6iJv66KsmOp4izngClpJu7ZSimooGqiU5KwkrWZNMmTTKMaJZMNGakDVFMbo6v_uJvjvrY69WJuotLXSab-NAgiBggJL4OUelFFJ2wXplIliE8xahl9BMOFlVSds-o_FzfCaDqLxfhWTL4bwBYiUqNhlLYbw4Q-paXHm</recordid><startdate>20010618</startdate><enddate>20010618</enddate><creator>Cser, L.</creator><creator>Gulyás, J.</creator><creator>Szücs, L.</creator><creator>Horváth, A.</creator><creator>Árvai, L.</creator><creator>Baross, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010618</creationdate><title>Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill</title><author>Cser, L. ; Gulyás, J. ; Szücs, L. ; Horváth, A. ; Árvai, L. ; Baross, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1696-d96784cf5d053083da2fd8cc2e36b38ca5471de4bda2abbc451a4784cabb3c923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial Neural Network</topic><topic>Artificial Neural Network Model</topic><topic>Component Plane</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Data Mining Tool</topic><topic>Exact sciences and technology</topic><topic>Irrelevant Factor</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cser, L.</creatorcontrib><creatorcontrib>Gulyás, J.</creatorcontrib><creatorcontrib>Szücs, L.</creatorcontrib><creatorcontrib>Horváth, A.</creatorcontrib><creatorcontrib>Árvai, L.</creatorcontrib><creatorcontrib>Baross, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cser, L.</au><au>Gulyás, J.</au><au>Szücs, L.</au><au>Horváth, A.</au><au>Árvai, L.</au><au>Baross, B.</au><au>Monostori, László</au><au>Ali, Moonis</au><au>Váncza, József</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill</atitle><btitle>Engineering of Intelligent Systems</btitle><date>2001-06-18</date><risdate>2001</risdate><spage>791</spage><epage>796</epage><pages>791-796</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540422196</isbn><isbn>9783540422198</isbn><eisbn>3540455175</eisbn><eisbn>9783540455172</eisbn><abstract>Cutting the costs and increasing the added value of steel products using new production methods and advanced control systems are the key factors in competitiveness of the European steel producers. In order to meet the challenge of the steadily growing pressure to improve the product quality, rolling mills employ extensive automation and sophisticated on-line data sampling techniques. Since the number of factors involved in the processes is very large, it takes time to discover and analyse their quantified influence. The paper gives a survey about the knowledge processing, using neural networks in rolling. The two main streamlines are shown by exemplary case studies: Self Organizing Maps as Data Mining tool for discovering the hidden dependencies among the influencing factors, finding the relevant and irrelevant factors, as well as application of different types of neural networks for optimisation of the draft schedule.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45517-5_86</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Engineering of Intelligent Systems, 2001, p.791-796
issn 0302-9743
1611-3349
language eng
recordid cdi_proquest_miscellaneous_31136234
source Springer Books
subjects Applied sciences
Artificial intelligence
Artificial Neural Network
Artificial Neural Network Model
Component Plane
Computer science
control theory
systems
Connectionism. Neural networks
Data Mining Tool
Exact sciences and technology
Irrelevant Factor
Learning and adaptive systems
title Different Kinds of Neural Networks in Control and Monitoring of Hot Rolling Mill
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Different%20Kinds%20of%20Neural%20Networks%20in%20Control%20and%20Monitoring%20of%20Hot%20Rolling%20Mill&rft.btitle=Engineering%20of%20Intelligent%20Systems&rft.au=Cser,%20L.&rft.date=2001-06-18&rft.spage=791&rft.epage=796&rft.pages=791-796&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540422196&rft.isbn_list=9783540422198&rft_id=info:doi/10.1007/3-540-45517-5_86&rft_dat=%3Cproquest_pasca%3E31136234%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540455175&rft.eisbn_list=9783540455172&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31136234&rft_id=info:pmid/&rfr_iscdi=true