Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation

Optical coherence tomography (OCT) is widely used for its high resolution. Accurate OCT image segmentation can significantly improve the diagnosis and treatment of retinal diseases such as Diabetic Macular Edema (DME). However, in resource-limited regions, portable devices with low-quality output ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-12, Vol.183, p.109223, Article 109223
Hauptverfasser: Wu, Zhuoyu, Wu, Qinchen, Fang, Wenqi, Ou, Wenhui, Wang, Quanjun, Zhang, Linde, Chen, Chao, Wang, Zheng, Li, Heshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109223
container_title Computers in biology and medicine
container_volume 183
creator Wu, Zhuoyu
Wu, Qinchen
Fang, Wenqi
Ou, Wenhui
Wang, Quanjun
Zhang, Linde
Chen, Chao
Wang, Zheng
Li, Heshan
description Optical coherence tomography (OCT) is widely used for its high resolution. Accurate OCT image segmentation can significantly improve the diagnosis and treatment of retinal diseases such as Diabetic Macular Edema (DME). However, in resource-limited regions, portable devices with low-quality output are more frequently used, severely affecting the performance of segmentation. To address this issue, we propose a novel methodology in this paper, including a dedicated pre-processing pipeline and an end-to-end double U-shaped cascaded architecture, H-Unets. In addition, an Adaptive Attention Fusion (AAF) module is elaborately designed to improve the segmentation performance of H-Unets. To demonstrate the effectiveness of our method, we conduct a bunch of ablation and comparative studies on three open-source datasets. The experimental results show the validity of the pre-processing pipeline and H-Unets, achieving the highest Dice score of 90.60%±0.87% among popular methods in a relatively small model size.
doi_str_mv 10.1016/j.compbiomed.2024.109223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3113381430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524013088</els_id><sourcerecordid>3113381430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1922-de8480eda524b267bcc7f1414e7f9a3521ecbb89047f60997e9841721ac616283</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCX0CWuHDJ4rGdxOFWVrRFqtRLe7Yce7LyKrG3dgIqvx6HbYXEhdNI9jdvZt4jhALbAoPm82Fr43TsfZzQbTnjsjx3nItXZAOq7SpWC_mabBgDVknF6zNynvOBMSaZYG_JmehEowTwDfE3Jk0x-F8-7OlDwDl_oZfzjGH2MdCrJa9lim4ZkfpArcnWOHTVH5QOMdEx_qweFzP6-Yne7e6pn8we6TAu3tGM-6lImVXsHXkzmDHj--d6QR6uvt3vbqrbu-vvu8vbykI5oXKopGLoTM1lz5u2t7YdQILEduiMqDmg7XvVMdkODeu6FjsloeVgbAMNV-KCfDrpHlN8XDDPevLZ4jiagHHJWgAIoUAKVtCP_6CHuKRQtisUL77VAtpCqRNlU8w54aCPqRyZnjQwvcahD_pvHHqNQ5_iKK0fngcs_fr30vjifwG-ngAsjvzwmHS2HoNF5xPaWbvo_z_lN6s9n9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128255317</pqid></control><display><type>article</type><title>Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wu, Zhuoyu ; Wu, Qinchen ; Fang, Wenqi ; Ou, Wenhui ; Wang, Quanjun ; Zhang, Linde ; Chen, Chao ; Wang, Zheng ; Li, Heshan</creator><creatorcontrib>Wu, Zhuoyu ; Wu, Qinchen ; Fang, Wenqi ; Ou, Wenhui ; Wang, Quanjun ; Zhang, Linde ; Chen, Chao ; Wang, Zheng ; Li, Heshan</creatorcontrib><description>Optical coherence tomography (OCT) is widely used for its high resolution. Accurate OCT image segmentation can significantly improve the diagnosis and treatment of retinal diseases such as Diabetic Macular Edema (DME). However, in resource-limited regions, portable devices with low-quality output are more frequently used, severely affecting the performance of segmentation. To address this issue, we propose a novel methodology in this paper, including a dedicated pre-processing pipeline and an end-to-end double U-shaped cascaded architecture, H-Unets. In addition, an Adaptive Attention Fusion (AAF) module is elaborately designed to improve the segmentation performance of H-Unets. To demonstrate the effectiveness of our method, we conduct a bunch of ablation and comparative studies on three open-source datasets. The experimental results show the validity of the pre-processing pipeline and H-Unets, achieving the highest Dice score of 90.60%±0.87% among popular methods in a relatively small model size.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109223</identifier><identifier>PMID: 39368312</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Ablation ; Accuracy ; Algorithms ; Artificial intelligence ; Biology ; Comparative studies ; Computers ; Datasets ; Deep learning ; Diabetes ; Diabetes mellitus ; Diabetic Retinopathy - diagnostic imaging ; Edema ; Efficiency ; Fusion module ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image resolution ; Image segmentation ; Intraretinal fluid detection ; Low income groups ; Macular Edema - diagnostic imaging ; Medical image segmentation ; Medical imaging ; Medicine ; Modules ; Optical Coherence Tomography ; Portable equipment ; Public health ; Tomography ; Tomography, Optical Coherence - methods</subject><ispartof>Computers in biology and medicine, 2024-12, Vol.183, p.109223, Article 109223</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1922-de8480eda524b267bcc7f1414e7f9a3521ecbb89047f60997e9841721ac616283</cites><orcidid>0009-0009-6779-5841 ; 0009-0002-1978-8021 ; 0009-0002-5147-4858 ; 0000-0001-6488-224X ; 0000-0003-3347-0511 ; 0000-0002-9075-7626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.109223$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39368312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhuoyu</creatorcontrib><creatorcontrib>Wu, Qinchen</creatorcontrib><creatorcontrib>Fang, Wenqi</creatorcontrib><creatorcontrib>Ou, Wenhui</creatorcontrib><creatorcontrib>Wang, Quanjun</creatorcontrib><creatorcontrib>Zhang, Linde</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Heshan</creatorcontrib><title>Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Optical coherence tomography (OCT) is widely used for its high resolution. Accurate OCT image segmentation can significantly improve the diagnosis and treatment of retinal diseases such as Diabetic Macular Edema (DME). However, in resource-limited regions, portable devices with low-quality output are more frequently used, severely affecting the performance of segmentation. To address this issue, we propose a novel methodology in this paper, including a dedicated pre-processing pipeline and an end-to-end double U-shaped cascaded architecture, H-Unets. In addition, an Adaptive Attention Fusion (AAF) module is elaborately designed to improve the segmentation performance of H-Unets. To demonstrate the effectiveness of our method, we conduct a bunch of ablation and comparative studies on three open-source datasets. The experimental results show the validity of the pre-processing pipeline and H-Unets, achieving the highest Dice score of 90.60%±0.87% among popular methods in a relatively small model size.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology</subject><subject>Comparative studies</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Retinopathy - diagnostic imaging</subject><subject>Edema</subject><subject>Efficiency</subject><subject>Fusion module</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Intraretinal fluid detection</subject><subject>Low income groups</subject><subject>Macular Edema - diagnostic imaging</subject><subject>Medical image segmentation</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Modules</subject><subject>Optical Coherence Tomography</subject><subject>Portable equipment</subject><subject>Public health</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCX0CWuHDJ4rGdxOFWVrRFqtRLe7Yce7LyKrG3dgIqvx6HbYXEhdNI9jdvZt4jhALbAoPm82Fr43TsfZzQbTnjsjx3nItXZAOq7SpWC_mabBgDVknF6zNynvOBMSaZYG_JmehEowTwDfE3Jk0x-F8-7OlDwDl_oZfzjGH2MdCrJa9lim4ZkfpArcnWOHTVH5QOMdEx_qweFzP6-Yne7e6pn8we6TAu3tGM-6lImVXsHXkzmDHj--d6QR6uvt3vbqrbu-vvu8vbykI5oXKopGLoTM1lz5u2t7YdQILEduiMqDmg7XvVMdkODeu6FjsloeVgbAMNV-KCfDrpHlN8XDDPevLZ4jiagHHJWgAIoUAKVtCP_6CHuKRQtisUL77VAtpCqRNlU8w54aCPqRyZnjQwvcahD_pvHHqNQ5_iKK0fngcs_fr30vjifwG-ngAsjvzwmHS2HoNF5xPaWbvo_z_lN6s9n9I</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wu, Zhuoyu</creator><creator>Wu, Qinchen</creator><creator>Fang, Wenqi</creator><creator>Ou, Wenhui</creator><creator>Wang, Quanjun</creator><creator>Zhang, Linde</creator><creator>Chen, Chao</creator><creator>Wang, Zheng</creator><creator>Li, Heshan</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-6779-5841</orcidid><orcidid>https://orcid.org/0009-0002-1978-8021</orcidid><orcidid>https://orcid.org/0009-0002-5147-4858</orcidid><orcidid>https://orcid.org/0000-0001-6488-224X</orcidid><orcidid>https://orcid.org/0000-0003-3347-0511</orcidid><orcidid>https://orcid.org/0000-0002-9075-7626</orcidid></search><sort><creationdate>202412</creationdate><title>Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation</title><author>Wu, Zhuoyu ; Wu, Qinchen ; Fang, Wenqi ; Ou, Wenhui ; Wang, Quanjun ; Zhang, Linde ; Chen, Chao ; Wang, Zheng ; Li, Heshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1922-de8480eda524b267bcc7f1414e7f9a3521ecbb89047f60997e9841721ac616283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology</topic><topic>Comparative studies</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Retinopathy - diagnostic imaging</topic><topic>Edema</topic><topic>Efficiency</topic><topic>Fusion module</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Intraretinal fluid detection</topic><topic>Low income groups</topic><topic>Macular Edema - diagnostic imaging</topic><topic>Medical image segmentation</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Modules</topic><topic>Optical Coherence Tomography</topic><topic>Portable equipment</topic><topic>Public health</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhuoyu</creatorcontrib><creatorcontrib>Wu, Qinchen</creatorcontrib><creatorcontrib>Fang, Wenqi</creatorcontrib><creatorcontrib>Ou, Wenhui</creatorcontrib><creatorcontrib>Wang, Quanjun</creatorcontrib><creatorcontrib>Zhang, Linde</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Li, Heshan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhuoyu</au><au>Wu, Qinchen</au><au>Fang, Wenqi</au><au>Ou, Wenhui</au><au>Wang, Quanjun</au><au>Zhang, Linde</au><au>Chen, Chao</au><au>Wang, Zheng</au><au>Li, Heshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>183</volume><spage>109223</spage><pages>109223-</pages><artnum>109223</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Optical coherence tomography (OCT) is widely used for its high resolution. Accurate OCT image segmentation can significantly improve the diagnosis and treatment of retinal diseases such as Diabetic Macular Edema (DME). However, in resource-limited regions, portable devices with low-quality output are more frequently used, severely affecting the performance of segmentation. To address this issue, we propose a novel methodology in this paper, including a dedicated pre-processing pipeline and an end-to-end double U-shaped cascaded architecture, H-Unets. In addition, an Adaptive Attention Fusion (AAF) module is elaborately designed to improve the segmentation performance of H-Unets. To demonstrate the effectiveness of our method, we conduct a bunch of ablation and comparative studies on three open-source datasets. The experimental results show the validity of the pre-processing pipeline and H-Unets, achieving the highest Dice score of 90.60%±0.87% among popular methods in a relatively small model size.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39368312</pmid><doi>10.1016/j.compbiomed.2024.109223</doi><orcidid>https://orcid.org/0009-0009-6779-5841</orcidid><orcidid>https://orcid.org/0009-0002-1978-8021</orcidid><orcidid>https://orcid.org/0009-0002-5147-4858</orcidid><orcidid>https://orcid.org/0000-0001-6488-224X</orcidid><orcidid>https://orcid.org/0000-0003-3347-0511</orcidid><orcidid>https://orcid.org/0000-0002-9075-7626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-12, Vol.183, p.109223, Article 109223
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3113381430
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Ablation
Accuracy
Algorithms
Artificial intelligence
Biology
Comparative studies
Computers
Datasets
Deep learning
Diabetes
Diabetes mellitus
Diabetic Retinopathy - diagnostic imaging
Edema
Efficiency
Fusion module
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image resolution
Image segmentation
Intraretinal fluid detection
Low income groups
Macular Edema - diagnostic imaging
Medical image segmentation
Medical imaging
Medicine
Modules
Optical Coherence Tomography
Portable equipment
Public health
Tomography
Tomography, Optical Coherence - methods
title Harmonizing Unets: Attention Fusion module in cascaded-Unets for low-quality OCT image fluid segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonizing%20Unets:%20Attention%20Fusion%20module%20in%20cascaded-Unets%20for%20low-quality%20OCT%20image%20fluid%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wu,%20Zhuoyu&rft.date=2024-12&rft.volume=183&rft.spage=109223&rft.pages=109223-&rft.artnum=109223&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109223&rft_dat=%3Cproquest_cross%3E3113381430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128255317&rft_id=info:pmid/39368312&rft_els_id=S0010482524013088&rfr_iscdi=true