Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha

The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2024-11, Vol.89 (11), p.7916-7927
Hauptverfasser: Jeong, Ah‐Young, Hong, Seong‐Jin, Jang, Da‐Eun, Kim, Eunhye, Ko, Sugju, Kim, Young‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7927
container_issue 11
container_start_page 7916
container_title Journal of food science
container_volume 89
creator Jeong, Ah‐Young
Hong, Seong‐Jin
Jang, Da‐Eun
Kim, Eunhye
Ko, Sugju
Kim, Young‐Min
description The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.
doi_str_mv 10.1111/1750-3841.17428
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3113124629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126901808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</originalsourceid><addsrcrecordid>eNqFkUtP7SAUhYnR6PExdmZInNxJlQ0t0KHxdTUmDnROKFAP2sKxtDH66y_1eB04cU_IXvnWClkboUMgJ5DnFERFCiZLOAFRUrmBFt_KJloQQmkBUIodtJvSM5l3xrfRDqsZ50LUC7S8X42-9x969DHg2OLemyE2XnfYxJDiMHqNdbC416Mbspyy3q9i8p8GF5Y6GJfwUzdl3husjbezdXRhxD7gl9g3k1nqfbTVZrc7-Hr30OPV5eP53-Lu_vrm_OyuMLTisuDAqsoSyiptJHAguqS2lVZLYwVoAUZAzSQQXlkKxrZtI2RlGy1Jo61je-jPOnY1xNfJpVH1PhnXdTq4OCXFABjQktM6o8c_0Oc4DSF_LlOU1wQkkZk6XVO5lpQG16rV4Hs9vCsgar6BmhtXc-Pq8wbZcfSVOzW9s9_8_9IzwNfAm-_c-2956vbq4mGd_A_Q1pHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126901808</pqid></control><display><type>article</type><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</creator><creatorcontrib>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</creatorcontrib><description>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</description><identifier>ISSN: 0022-1147</identifier><identifier>ISSN: 1750-3841</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.17428</identifier><identifier>PMID: 39366779</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Acetic Acid - analysis ; Acetic Acid - metabolism ; Acetobacteraceae - metabolism ; Beverages ; Cellulose ; Composition ; Consortia ; Correlation analysis ; Dekkera - metabolism ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fermented food ; Food Microbiology ; Gluconates - metabolism ; Gluconic acid ; Glucose - metabolism ; Hydrogen-Ion Concentration ; Ingredients ; Komagataeibacter spp ; kombucha ; Kombucha Tea - analysis ; Kombucha Tea - microbiology ; Microbial Consortia ; Microorganisms ; Optimization ; Quality control ; Response surface methodology ; Yeasts</subject><ispartof>Journal of food science, 2024-11, Vol.89 (11), p.7916-7927</ispartof><rights>2024 Institute of Food Technologists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</cites><orcidid>0000-0002-7165-236X ; 0000-0002-2559-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.17428$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.17428$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39366779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Ah‐Young</creatorcontrib><creatorcontrib>Hong, Seong‐Jin</creatorcontrib><creatorcontrib>Jang, Da‐Eun</creatorcontrib><creatorcontrib>Kim, Eunhye</creatorcontrib><creatorcontrib>Ko, Sugju</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</description><subject>Acetic acid</subject><subject>Acetic Acid - analysis</subject><subject>Acetic Acid - metabolism</subject><subject>Acetobacteraceae - metabolism</subject><subject>Beverages</subject><subject>Cellulose</subject><subject>Composition</subject><subject>Consortia</subject><subject>Correlation analysis</subject><subject>Dekkera - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fermented food</subject><subject>Food Microbiology</subject><subject>Gluconates - metabolism</subject><subject>Gluconic acid</subject><subject>Glucose - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ingredients</subject><subject>Komagataeibacter spp</subject><subject>kombucha</subject><subject>Kombucha Tea - analysis</subject><subject>Kombucha Tea - microbiology</subject><subject>Microbial Consortia</subject><subject>Microorganisms</subject><subject>Optimization</subject><subject>Quality control</subject><subject>Response surface methodology</subject><subject>Yeasts</subject><issn>0022-1147</issn><issn>1750-3841</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtP7SAUhYnR6PExdmZInNxJlQ0t0KHxdTUmDnROKFAP2sKxtDH66y_1eB04cU_IXvnWClkboUMgJ5DnFERFCiZLOAFRUrmBFt_KJloQQmkBUIodtJvSM5l3xrfRDqsZ50LUC7S8X42-9x969DHg2OLemyE2XnfYxJDiMHqNdbC416Mbspyy3q9i8p8GF5Y6GJfwUzdl3husjbezdXRhxD7gl9g3k1nqfbTVZrc7-Hr30OPV5eP53-Lu_vrm_OyuMLTisuDAqsoSyiptJHAguqS2lVZLYwVoAUZAzSQQXlkKxrZtI2RlGy1Jo61je-jPOnY1xNfJpVH1PhnXdTq4OCXFABjQktM6o8c_0Oc4DSF_LlOU1wQkkZk6XVO5lpQG16rV4Hs9vCsgar6BmhtXc-Pq8wbZcfSVOzW9s9_8_9IzwNfAm-_c-2956vbq4mGd_A_Q1pHM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Jeong, Ah‐Young</creator><creator>Hong, Seong‐Jin</creator><creator>Jang, Da‐Eun</creator><creator>Kim, Eunhye</creator><creator>Ko, Sugju</creator><creator>Kim, Young‐Min</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7165-236X</orcidid><orcidid>https://orcid.org/0000-0002-2559-9182</orcidid></search><sort><creationdate>202411</creationdate><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><author>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - analysis</topic><topic>Acetic Acid - metabolism</topic><topic>Acetobacteraceae - metabolism</topic><topic>Beverages</topic><topic>Cellulose</topic><topic>Composition</topic><topic>Consortia</topic><topic>Correlation analysis</topic><topic>Dekkera - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fermented food</topic><topic>Food Microbiology</topic><topic>Gluconates - metabolism</topic><topic>Gluconic acid</topic><topic>Glucose - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ingredients</topic><topic>Komagataeibacter spp</topic><topic>kombucha</topic><topic>Kombucha Tea - analysis</topic><topic>Kombucha Tea - microbiology</topic><topic>Microbial Consortia</topic><topic>Microorganisms</topic><topic>Optimization</topic><topic>Quality control</topic><topic>Response surface methodology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ah‐Young</creatorcontrib><creatorcontrib>Hong, Seong‐Jin</creatorcontrib><creatorcontrib>Jang, Da‐Eun</creatorcontrib><creatorcontrib>Kim, Eunhye</creatorcontrib><creatorcontrib>Ko, Sugju</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ah‐Young</au><au>Hong, Seong‐Jin</au><au>Jang, Da‐Eun</au><au>Kim, Eunhye</au><au>Ko, Sugju</au><au>Kim, Young‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2024-11</date><risdate>2024</risdate><volume>89</volume><issue>11</issue><spage>7916</spage><epage>7927</epage><pages>7916-7927</pages><issn>0022-1147</issn><issn>1750-3841</issn><eissn>1750-3841</eissn><abstract>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39366779</pmid><doi>10.1111/1750-3841.17428</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7165-236X</orcidid><orcidid>https://orcid.org/0000-0002-2559-9182</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2024-11, Vol.89 (11), p.7916-7927
issn 0022-1147
1750-3841
1750-3841
language eng
recordid cdi_proquest_miscellaneous_3113124629
source MEDLINE; Wiley Journals
subjects Acetic acid
Acetic Acid - analysis
Acetic Acid - metabolism
Acetobacteraceae - metabolism
Beverages
Cellulose
Composition
Consortia
Correlation analysis
Dekkera - metabolism
Ethanol
Ethanol - metabolism
Fermentation
Fermented food
Food Microbiology
Gluconates - metabolism
Gluconic acid
Glucose - metabolism
Hydrogen-Ion Concentration
Ingredients
Komagataeibacter spp
kombucha
Kombucha Tea - analysis
Kombucha Tea - microbiology
Microbial Consortia
Microorganisms
Optimization
Quality control
Response surface methodology
Yeasts
title Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20microbial%20consortia%20and%20materials%20composition%20enhances%20gluconic%20acid%20content%20in%20kombucha&rft.jtitle=Journal%20of%20food%20science&rft.au=Jeong,%20Ah%E2%80%90Young&rft.date=2024-11&rft.volume=89&rft.issue=11&rft.spage=7916&rft.epage=7927&rft.pages=7916-7927&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.17428&rft_dat=%3Cproquest_cross%3E3126901808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126901808&rft_id=info:pmid/39366779&rfr_iscdi=true