Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha
The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) a...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2024-11, Vol.89 (11), p.7916-7927 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7927 |
---|---|
container_issue | 11 |
container_start_page | 7916 |
container_title | Journal of food science |
container_volume | 89 |
creator | Jeong, Ah‐Young Hong, Seong‐Jin Jang, Da‐Eun Kim, Eunhye Ko, Sugju Kim, Young‐Min |
description | The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha. |
doi_str_mv | 10.1111/1750-3841.17428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3113124629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126901808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</originalsourceid><addsrcrecordid>eNqFkUtP7SAUhYnR6PExdmZInNxJlQ0t0KHxdTUmDnROKFAP2sKxtDH66y_1eB04cU_IXvnWClkboUMgJ5DnFERFCiZLOAFRUrmBFt_KJloQQmkBUIodtJvSM5l3xrfRDqsZ50LUC7S8X42-9x969DHg2OLemyE2XnfYxJDiMHqNdbC416Mbspyy3q9i8p8GF5Y6GJfwUzdl3husjbezdXRhxD7gl9g3k1nqfbTVZrc7-Hr30OPV5eP53-Lu_vrm_OyuMLTisuDAqsoSyiptJHAguqS2lVZLYwVoAUZAzSQQXlkKxrZtI2RlGy1Jo61je-jPOnY1xNfJpVH1PhnXdTq4OCXFABjQktM6o8c_0Oc4DSF_LlOU1wQkkZk6XVO5lpQG16rV4Hs9vCsgar6BmhtXc-Pq8wbZcfSVOzW9s9_8_9IzwNfAm-_c-2956vbq4mGd_A_Q1pHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126901808</pqid></control><display><type>article</type><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</creator><creatorcontrib>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</creatorcontrib><description>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</description><identifier>ISSN: 0022-1147</identifier><identifier>ISSN: 1750-3841</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.17428</identifier><identifier>PMID: 39366779</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Acetic Acid - analysis ; Acetic Acid - metabolism ; Acetobacteraceae - metabolism ; Beverages ; Cellulose ; Composition ; Consortia ; Correlation analysis ; Dekkera - metabolism ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fermented food ; Food Microbiology ; Gluconates - metabolism ; Gluconic acid ; Glucose - metabolism ; Hydrogen-Ion Concentration ; Ingredients ; Komagataeibacter spp ; kombucha ; Kombucha Tea - analysis ; Kombucha Tea - microbiology ; Microbial Consortia ; Microorganisms ; Optimization ; Quality control ; Response surface methodology ; Yeasts</subject><ispartof>Journal of food science, 2024-11, Vol.89 (11), p.7916-7927</ispartof><rights>2024 Institute of Food Technologists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</cites><orcidid>0000-0002-7165-236X ; 0000-0002-2559-9182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.17428$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.17428$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39366779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Ah‐Young</creatorcontrib><creatorcontrib>Hong, Seong‐Jin</creatorcontrib><creatorcontrib>Jang, Da‐Eun</creatorcontrib><creatorcontrib>Kim, Eunhye</creatorcontrib><creatorcontrib>Ko, Sugju</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</description><subject>Acetic acid</subject><subject>Acetic Acid - analysis</subject><subject>Acetic Acid - metabolism</subject><subject>Acetobacteraceae - metabolism</subject><subject>Beverages</subject><subject>Cellulose</subject><subject>Composition</subject><subject>Consortia</subject><subject>Correlation analysis</subject><subject>Dekkera - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fermented food</subject><subject>Food Microbiology</subject><subject>Gluconates - metabolism</subject><subject>Gluconic acid</subject><subject>Glucose - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ingredients</subject><subject>Komagataeibacter spp</subject><subject>kombucha</subject><subject>Kombucha Tea - analysis</subject><subject>Kombucha Tea - microbiology</subject><subject>Microbial Consortia</subject><subject>Microorganisms</subject><subject>Optimization</subject><subject>Quality control</subject><subject>Response surface methodology</subject><subject>Yeasts</subject><issn>0022-1147</issn><issn>1750-3841</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtP7SAUhYnR6PExdmZInNxJlQ0t0KHxdTUmDnROKFAP2sKxtDH66y_1eB04cU_IXvnWClkboUMgJ5DnFERFCiZLOAFRUrmBFt_KJloQQmkBUIodtJvSM5l3xrfRDqsZ50LUC7S8X42-9x969DHg2OLemyE2XnfYxJDiMHqNdbC416Mbspyy3q9i8p8GF5Y6GJfwUzdl3husjbezdXRhxD7gl9g3k1nqfbTVZrc7-Hr30OPV5eP53-Lu_vrm_OyuMLTisuDAqsoSyiptJHAguqS2lVZLYwVoAUZAzSQQXlkKxrZtI2RlGy1Jo61je-jPOnY1xNfJpVH1PhnXdTq4OCXFABjQktM6o8c_0Oc4DSF_LlOU1wQkkZk6XVO5lpQG16rV4Hs9vCsgar6BmhtXc-Pq8wbZcfSVOzW9s9_8_9IzwNfAm-_c-2956vbq4mGd_A_Q1pHM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Jeong, Ah‐Young</creator><creator>Hong, Seong‐Jin</creator><creator>Jang, Da‐Eun</creator><creator>Kim, Eunhye</creator><creator>Ko, Sugju</creator><creator>Kim, Young‐Min</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7165-236X</orcidid><orcidid>https://orcid.org/0000-0002-2559-9182</orcidid></search><sort><creationdate>202411</creationdate><title>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</title><author>Jeong, Ah‐Young ; Hong, Seong‐Jin ; Jang, Da‐Eun ; Kim, Eunhye ; Ko, Sugju ; Kim, Young‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2568-61355d0235ac81610a42df8da8cd71a71c719381065d21cdffb785dba80bade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - analysis</topic><topic>Acetic Acid - metabolism</topic><topic>Acetobacteraceae - metabolism</topic><topic>Beverages</topic><topic>Cellulose</topic><topic>Composition</topic><topic>Consortia</topic><topic>Correlation analysis</topic><topic>Dekkera - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fermented food</topic><topic>Food Microbiology</topic><topic>Gluconates - metabolism</topic><topic>Gluconic acid</topic><topic>Glucose - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ingredients</topic><topic>Komagataeibacter spp</topic><topic>kombucha</topic><topic>Kombucha Tea - analysis</topic><topic>Kombucha Tea - microbiology</topic><topic>Microbial Consortia</topic><topic>Microorganisms</topic><topic>Optimization</topic><topic>Quality control</topic><topic>Response surface methodology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ah‐Young</creatorcontrib><creatorcontrib>Hong, Seong‐Jin</creatorcontrib><creatorcontrib>Jang, Da‐Eun</creatorcontrib><creatorcontrib>Kim, Eunhye</creatorcontrib><creatorcontrib>Ko, Sugju</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ah‐Young</au><au>Hong, Seong‐Jin</au><au>Jang, Da‐Eun</au><au>Kim, Eunhye</au><au>Ko, Sugju</au><au>Kim, Young‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2024-11</date><risdate>2024</risdate><volume>89</volume><issue>11</issue><spage>7916</spage><epage>7927</epage><pages>7916-7927</pages><issn>0022-1147</issn><issn>1750-3841</issn><eissn>1750-3841</eissn><abstract>The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39366779</pmid><doi>10.1111/1750-3841.17428</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7165-236X</orcidid><orcidid>https://orcid.org/0000-0002-2559-9182</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2024-11, Vol.89 (11), p.7916-7927 |
issn | 0022-1147 1750-3841 1750-3841 |
language | eng |
recordid | cdi_proquest_miscellaneous_3113124629 |
source | MEDLINE; Wiley Journals |
subjects | Acetic acid Acetic Acid - analysis Acetic Acid - metabolism Acetobacteraceae - metabolism Beverages Cellulose Composition Consortia Correlation analysis Dekkera - metabolism Ethanol Ethanol - metabolism Fermentation Fermented food Food Microbiology Gluconates - metabolism Gluconic acid Glucose - metabolism Hydrogen-Ion Concentration Ingredients Komagataeibacter spp kombucha Kombucha Tea - analysis Kombucha Tea - microbiology Microbial Consortia Microorganisms Optimization Quality control Response surface methodology Yeasts |
title | Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20microbial%20consortia%20and%20materials%20composition%20enhances%20gluconic%20acid%20content%20in%20kombucha&rft.jtitle=Journal%20of%20food%20science&rft.au=Jeong,%20Ah%E2%80%90Young&rft.date=2024-11&rft.volume=89&rft.issue=11&rft.spage=7916&rft.epage=7927&rft.pages=7916-7927&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.17428&rft_dat=%3Cproquest_cross%3E3126901808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126901808&rft_id=info:pmid/39366779&rfr_iscdi=true |