Methane C(sp)-H bond activation by water microbubbles
Microbubble-induced oxidation offers an effective approach for activating the C(sp 3 )-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. In this study, microbubbles provided an extensive gas-liquid interface that promoted...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-10, Vol.15 (41), p.1726-1731 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1731 |
---|---|
container_issue | 41 |
container_start_page | 1726 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Li, Juan Xu, Jinheng Song, Qingyuan Zhang, Xinxing Xia, Yu Zare, Richard N |
description | Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. In this study, microbubbles provided an extensive gas-liquid interface that promoted the formation of hydroxyl (OH&z.rad;) and hydrogen radicals (H&z.rad;), which facilitated the activation of methane, leading to the generation of methyl radicals (CH
3
&z.rad;). These species further participated in free-radical reactions at the interface, resulting in the production of ethane and formic acid. The microbubble system was optimized by adjusting gas-liquid interaction time, water temperature, and bubble size, with the optimal conditions (150 s of water-gas interaction, 15 °C, 50 μm bubble size) yielding a methane conversion rate of 171.5 ppm h
−1
, an ethane production rate of 23.5 ppm h
−1
, and a formic acid production rate of 2.3 nM h
−1
during 8 h of continuous operation. The stability and efficiency of this process, confirmed through electron spin resonance, high-resolution mass spectrometry, and gas chromatography, suggest that microbubble-based methane activation offers a scalable and energy-efficient pathway for methane utilization.
Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. |
doi_str_mv | 10.1039/d4sc05773b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112859148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119621578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-17115b2c0f8a9b9a22ab573f33a5bfb2465dc77422afa89c78d53bb446c051ba3</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EolXphTsoEpeCFPAaJycEYSlSEQfgbNmOQ1OlSbGTov57XFrCMhePPJ-e5s0D4BDBcwRJcpFRpyHjnKgd0MeQojBiJNntegx7YOjcDPoiBDHM90GPJCSikNM-YI-mmcrKBOnILU7DcaDqKgukboqlbIq6CtQq-JCNscG80LZWrVKlcQdgL5elM8PtOwCvd7cv6TicPN0_pFeTUBMUNyHiCDGFNcxjmahEYiwV4yQnRDKVK0wjlmnOqf_PZZxoHmeMKEVp5C0hJckAXG50F62am0ybqrGyFAtbzKVdiVoW4u-kKqbirV4KhLwIQcgrjLYKtn5vjWvEvHDalKX3XLdOeAbHLEE09ujJP3RWt7by_tZUEmHE-Jo621D-Gs5Zk3fbICjWiYgb-px-JXLt4ePf-3fo9_09cLQBrNPd9CdS8gn9545e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119621578</pqid></control><display><type>article</type><title>Methane C(sp)-H bond activation by water microbubbles</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Juan ; Xu, Jinheng ; Song, Qingyuan ; Zhang, Xinxing ; Xia, Yu ; Zare, Richard N</creator><creatorcontrib>Li, Juan ; Xu, Jinheng ; Song, Qingyuan ; Zhang, Xinxing ; Xia, Yu ; Zare, Richard N</creatorcontrib><description>Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. In this study, microbubbles provided an extensive gas-liquid interface that promoted the formation of hydroxyl (OH&z.rad;) and hydrogen radicals (H&z.rad;), which facilitated the activation of methane, leading to the generation of methyl radicals (CH
3
&z.rad;). These species further participated in free-radical reactions at the interface, resulting in the production of ethane and formic acid. The microbubble system was optimized by adjusting gas-liquid interaction time, water temperature, and bubble size, with the optimal conditions (150 s of water-gas interaction, 15 °C, 50 μm bubble size) yielding a methane conversion rate of 171.5 ppm h
−1
, an ethane production rate of 23.5 ppm h
−1
, and a formic acid production rate of 2.3 nM h
−1
during 8 h of continuous operation. The stability and efficiency of this process, confirmed through electron spin resonance, high-resolution mass spectrometry, and gas chromatography, suggest that microbubble-based methane activation offers a scalable and energy-efficient pathway for methane utilization.
Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05773b</identifier><identifier>PMID: 39364074</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Electron paramagnetic resonance ; Electron spin ; Ethane ; Formic acid ; Gas chromatography ; Gas-liquid interactions ; Hydrogen bonds ; Mass spectrometry ; Methane utilization ; Methyl radicals ; Oxidation ; Spin resonance ; Water temperature</subject><ispartof>Chemical science (Cambridge), 2024-10, Vol.15 (41), p.1726-1731</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-17115b2c0f8a9b9a22ab573f33a5bfb2465dc77422afa89c78d53bb446c051ba3</cites><orcidid>0000-0001-5266-4253 ; 0000-0001-5884-2727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39364074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Xu, Jinheng</creatorcontrib><creatorcontrib>Song, Qingyuan</creatorcontrib><creatorcontrib>Zhang, Xinxing</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><title>Methane C(sp)-H bond activation by water microbubbles</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. In this study, microbubbles provided an extensive gas-liquid interface that promoted the formation of hydroxyl (OH&z.rad;) and hydrogen radicals (H&z.rad;), which facilitated the activation of methane, leading to the generation of methyl radicals (CH
3
&z.rad;). These species further participated in free-radical reactions at the interface, resulting in the production of ethane and formic acid. The microbubble system was optimized by adjusting gas-liquid interaction time, water temperature, and bubble size, with the optimal conditions (150 s of water-gas interaction, 15 °C, 50 μm bubble size) yielding a methane conversion rate of 171.5 ppm h
−1
, an ethane production rate of 23.5 ppm h
−1
, and a formic acid production rate of 2.3 nM h
−1
during 8 h of continuous operation. The stability and efficiency of this process, confirmed through electron spin resonance, high-resolution mass spectrometry, and gas chromatography, suggest that microbubble-based methane activation offers a scalable and energy-efficient pathway for methane utilization.
Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters.</description><subject>Chemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Ethane</subject><subject>Formic acid</subject><subject>Gas chromatography</subject><subject>Gas-liquid interactions</subject><subject>Hydrogen bonds</subject><subject>Mass spectrometry</subject><subject>Methane utilization</subject><subject>Methyl radicals</subject><subject>Oxidation</subject><subject>Spin resonance</subject><subject>Water temperature</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EolXphTsoEpeCFPAaJycEYSlSEQfgbNmOQ1OlSbGTov57XFrCMhePPJ-e5s0D4BDBcwRJcpFRpyHjnKgd0MeQojBiJNntegx7YOjcDPoiBDHM90GPJCSikNM-YI-mmcrKBOnILU7DcaDqKgukboqlbIq6CtQq-JCNscG80LZWrVKlcQdgL5elM8PtOwCvd7cv6TicPN0_pFeTUBMUNyHiCDGFNcxjmahEYiwV4yQnRDKVK0wjlmnOqf_PZZxoHmeMKEVp5C0hJckAXG50F62am0ybqrGyFAtbzKVdiVoW4u-kKqbirV4KhLwIQcgrjLYKtn5vjWvEvHDalKX3XLdOeAbHLEE09ujJP3RWt7by_tZUEmHE-Jo621D-Gs5Zk3fbICjWiYgb-px-JXLt4ePf-3fo9_09cLQBrNPd9CdS8gn9545e</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Li, Juan</creator><creator>Xu, Jinheng</creator><creator>Song, Qingyuan</creator><creator>Zhang, Xinxing</creator><creator>Xia, Yu</creator><creator>Zare, Richard N</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid><orcidid>https://orcid.org/0000-0001-5884-2727</orcidid></search><sort><creationdate>20241023</creationdate><title>Methane C(sp)-H bond activation by water microbubbles</title><author>Li, Juan ; Xu, Jinheng ; Song, Qingyuan ; Zhang, Xinxing ; Xia, Yu ; Zare, Richard N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-17115b2c0f8a9b9a22ab573f33a5bfb2465dc77422afa89c78d53bb446c051ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Ethane</topic><topic>Formic acid</topic><topic>Gas chromatography</topic><topic>Gas-liquid interactions</topic><topic>Hydrogen bonds</topic><topic>Mass spectrometry</topic><topic>Methane utilization</topic><topic>Methyl radicals</topic><topic>Oxidation</topic><topic>Spin resonance</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Xu, Jinheng</creatorcontrib><creatorcontrib>Song, Qingyuan</creatorcontrib><creatorcontrib>Zhang, Xinxing</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Juan</au><au>Xu, Jinheng</au><au>Song, Qingyuan</au><au>Zhang, Xinxing</au><au>Xia, Yu</au><au>Zare, Richard N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane C(sp)-H bond activation by water microbubbles</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>15</volume><issue>41</issue><spage>1726</spage><epage>1731</epage><pages>1726-1731</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters. In this study, microbubbles provided an extensive gas-liquid interface that promoted the formation of hydroxyl (OH&z.rad;) and hydrogen radicals (H&z.rad;), which facilitated the activation of methane, leading to the generation of methyl radicals (CH
3
&z.rad;). These species further participated in free-radical reactions at the interface, resulting in the production of ethane and formic acid. The microbubble system was optimized by adjusting gas-liquid interaction time, water temperature, and bubble size, with the optimal conditions (150 s of water-gas interaction, 15 °C, 50 μm bubble size) yielding a methane conversion rate of 171.5 ppm h
−1
, an ethane production rate of 23.5 ppm h
−1
, and a formic acid production rate of 2.3 nM h
−1
during 8 h of continuous operation. The stability and efficiency of this process, confirmed through electron spin resonance, high-resolution mass spectrometry, and gas chromatography, suggest that microbubble-based methane activation offers a scalable and energy-efficient pathway for methane utilization.
Microbubble-induced oxidation offers an effective approach for activating the C(sp
3
)-H bond of methane under mild conditions, achieving a methane activation rate of up to 6.7% per hour under optimized parameters.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39364074</pmid><doi>10.1039/d4sc05773b</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid><orcidid>https://orcid.org/0000-0001-5884-2727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-10, Vol.15 (41), p.1726-1731 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112859148 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry Electron paramagnetic resonance Electron spin Ethane Formic acid Gas chromatography Gas-liquid interactions Hydrogen bonds Mass spectrometry Methane utilization Methyl radicals Oxidation Spin resonance Water temperature |
title | Methane C(sp)-H bond activation by water microbubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20C(sp)-H%20bond%20activation%20by%20water%20microbubbles&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Li,%20Juan&rft.date=2024-10-23&rft.volume=15&rft.issue=41&rft.spage=1726&rft.epage=1731&rft.pages=1726-1731&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05773b&rft_dat=%3Cproquest_pubme%3E3119621578%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119621578&rft_id=info:pmid/39364074&rfr_iscdi=true |