Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles

Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-11, p.e202413498
Hauptverfasser: Janicki, Mikołaj J, Szabla, Rafał
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e202413498
container_title Angewandte Chemie International Edition
container_volume
creator Janicki, Mikołaj J
Szabla, Rafał
description Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS ⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.
doi_str_mv 10.1002/anie.202413498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112858101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112858101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-649e8422f48c7c00709e8ebb00793667cf677479c64158be88863656505fd243</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMqKMLCn-tjNCVShSJUB0jxLn3BqldrGTof-eVC2d7j3puVenB6F7gqcEY_pUeQdTiiknjBf6Ao2JoCRnSrHLIXPGcqUFGaGblH4GXmssr9GIFUwyxcQYfc02VWvCGnz2EnyTsrmv6hayubXOOPBd9rkJXYjQ9KZzwWfBZt99a_uYz4LvKuedX2cL6CAGszctpFt0Zas2wd1pTtDqdb6aLfLlx9v77HmZG6Jxl0tegOaUWq6NMhgrPOxQ10ManpPKWKkUV4WRnAhdg9ZaMimkwMI2lLMJejzW7mL47SF15dYlA21beQh9KhkhVAtNMBnQ6RE1MaQUwZa76LZV3JcElweL5cFiebY4HDycuvt6C80Z_9fG_gA-o2yW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112858101</pqid></control><display><type>article</type><title>Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles</title><source>Wiley Journals</source><creator>Janicki, Mikołaj J ; Szabla, Rafał</creator><creatorcontrib>Janicki, Mikołaj J ; Szabla, Rafał</creatorcontrib><description>Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS ⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202413498</identifier><identifier>PMID: 39363735</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2024-11, p.e202413498</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-649e8422f48c7c00709e8ebb00793667cf677479c64158be88863656505fd243</cites><orcidid>0000-0002-1668-8044 ; 0000-0001-7216-1389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39363735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janicki, Mikołaj J</creatorcontrib><creatorcontrib>Szabla, Rafał</creatorcontrib><title>Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS ⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.</description><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqWwMqKMLCn-tjNCVShSJUB0jxLn3BqldrGTof-eVC2d7j3puVenB6F7gqcEY_pUeQdTiiknjBf6Ao2JoCRnSrHLIXPGcqUFGaGblH4GXmssr9GIFUwyxcQYfc02VWvCGnz2EnyTsrmv6hayubXOOPBd9rkJXYjQ9KZzwWfBZt99a_uYz4LvKuedX2cL6CAGszctpFt0Zas2wd1pTtDqdb6aLfLlx9v77HmZG6Jxl0tegOaUWq6NMhgrPOxQ10ManpPKWKkUV4WRnAhdg9ZaMimkwMI2lLMJejzW7mL47SF15dYlA21beQh9KhkhVAtNMBnQ6RE1MaQUwZa76LZV3JcElweL5cFiebY4HDycuvt6C80Z_9fG_gA-o2yW</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Janicki, Mikołaj J</creator><creator>Szabla, Rafał</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1668-8044</orcidid><orcidid>https://orcid.org/0000-0001-7216-1389</orcidid></search><sort><creationdate>20241125</creationdate><title>Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles</title><author>Janicki, Mikołaj J ; Szabla, Rafał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-649e8422f48c7c00709e8ebb00793667cf677479c64158be88863656505fd243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janicki, Mikołaj J</creatorcontrib><creatorcontrib>Szabla, Rafał</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janicki, Mikołaj J</au><au>Szabla, Rafał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-11-25</date><risdate>2024</risdate><spage>e202413498</spage><pages>e202413498-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS ⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.</abstract><cop>Germany</cop><pmid>39363735</pmid><doi>10.1002/anie.202413498</doi><orcidid>https://orcid.org/0000-0002-1668-8044</orcidid><orcidid>https://orcid.org/0000-0001-7216-1389</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-11, p.e202413498
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3112858101
source Wiley Journals
title Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chalcogen%20Bonds%20Enable%20Efficient%20Photoreduction%20of%20Sulfur-Containing%20Heterocycles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Janicki,%20Miko%C5%82aj%20J&rft.date=2024-11-25&rft.spage=e202413498&rft.pages=e202413498-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202413498&rft_dat=%3Cproquest_cross%3E3112858101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112858101&rft_id=info:pmid/39363735&rfr_iscdi=true