Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism
Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate hos...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-10, Vol.121 (41), p.e2413241121 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 41 |
container_start_page | e2413241121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Fan, Lijuan Liu, Bingnan Wang, Youxia Tang, Bin Xu, Tianqi Fu, Jian Wang, Chuanlong Liu, Yuan Ge, Liangpeng Wei, Hong Ren, Wenkai |
description | Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal
-derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition,
delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases. |
doi_str_mv | 10.1073/pnas.2413241121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112857433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112857433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK2evUnAi5e0s49sssdSfBSKgih4C7vJRrZsHu4mQv97N7YqeBh-w_DNwHwIXWKYY0jpomuknxOGaShM8BGaYhA45kzAMZoCkDTOGGETdOb9FgBEksEpmlBBOeYJmaK3ddNr35tG2mgji75VsjDWDj6qB2eakHGpnfnUZeRraW30_Lj0US_du-6jrnWFaXRIu5P12NW6l6q1xtfn6KSS1uuLQ87Q693ty-oh3jzdr1fLTVyQBPo4KZUgZVllXEguKpkoBYxUQpIsCXPAmqm05BUFjDkXCoiQpUp5hdMioZjSGbrZ3-1c-zGEV_La-EJbKxvdDj6nwUuWpIyO6PU_dNsOLnz-TfEUYwYkUIs9VbjWe6ervHOmlm6XY8hH6fkoPf-THjauDncHVevyl_-xTL8AYkV9cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116711402</pqid></control><display><type>article</type><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</creator><creatorcontrib>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</creatorcontrib><description>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal
-derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition,
delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2413241121</identifier><identifier>PMID: 39361652</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Colitis ; Colitis - chemically induced ; Colitis - metabolism ; Colitis - microbiology ; Colon ; Colon - metabolism ; Colon - microbiology ; Colon cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - microbiology ; Dextran ; Dextran Sulfate ; Dextrans ; Digestive system ; Extracellular Vesicles - metabolism ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Germfree ; Humans ; Intestinal microflora ; Lactobacillus ; Lactobacillus - genetics ; Lactobacillus - metabolism ; Mice ; Microbiota ; Microorganisms ; Polyamines ; Polyamines - metabolism ; Sodium sulfate ; Swine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (41), p.e2413241121</ispartof><rights>Copyright National Academy of Sciences Oct 8, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</cites><orcidid>0000-0002-9622-6471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39361652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Liu, Bingnan</creatorcontrib><creatorcontrib>Wang, Youxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Fu, Jian</creatorcontrib><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Ge, Liangpeng</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal
-derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition,
delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</description><subject>Animals</subject><subject>Colitis</subject><subject>Colitis - chemically induced</subject><subject>Colitis - metabolism</subject><subject>Colitis - microbiology</subject><subject>Colon</subject><subject>Colon - metabolism</subject><subject>Colon - microbiology</subject><subject>Colon cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - microbiology</subject><subject>Dextran</subject><subject>Dextran Sulfate</subject><subject>Dextrans</subject><subject>Digestive system</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Germfree</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Lactobacillus</subject><subject>Lactobacillus - genetics</subject><subject>Lactobacillus - metabolism</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Polyamines</subject><subject>Polyamines - metabolism</subject><subject>Sodium sulfate</subject><subject>Swine</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMtLw0AQhxdRbK2evUnAi5e0s49sssdSfBSKgih4C7vJRrZsHu4mQv97N7YqeBh-w_DNwHwIXWKYY0jpomuknxOGaShM8BGaYhA45kzAMZoCkDTOGGETdOb9FgBEksEpmlBBOeYJmaK3ddNr35tG2mgji75VsjDWDj6qB2eakHGpnfnUZeRraW30_Lj0US_du-6jrnWFaXRIu5P12NW6l6q1xtfn6KSS1uuLQ87Q693ty-oh3jzdr1fLTVyQBPo4KZUgZVllXEguKpkoBYxUQpIsCXPAmqm05BUFjDkXCoiQpUp5hdMioZjSGbrZ3-1c-zGEV_La-EJbKxvdDj6nwUuWpIyO6PU_dNsOLnz-TfEUYwYkUIs9VbjWe6ervHOmlm6XY8hH6fkoPf-THjauDncHVevyl_-xTL8AYkV9cA</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Fan, Lijuan</creator><creator>Liu, Bingnan</creator><creator>Wang, Youxia</creator><creator>Tang, Bin</creator><creator>Xu, Tianqi</creator><creator>Fu, Jian</creator><creator>Wang, Chuanlong</creator><creator>Liu, Yuan</creator><creator>Ge, Liangpeng</creator><creator>Wei, Hong</creator><creator>Ren, Wenkai</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9622-6471</orcidid></search><sort><creationdate>20241008</creationdate><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><author>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Colitis</topic><topic>Colitis - chemically induced</topic><topic>Colitis - metabolism</topic><topic>Colitis - microbiology</topic><topic>Colon</topic><topic>Colon - metabolism</topic><topic>Colon - microbiology</topic><topic>Colon cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - microbiology</topic><topic>Dextran</topic><topic>Dextran Sulfate</topic><topic>Dextrans</topic><topic>Digestive system</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Germfree</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Lactobacillus</topic><topic>Lactobacillus - genetics</topic><topic>Lactobacillus - metabolism</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Polyamines</topic><topic>Polyamines - metabolism</topic><topic>Sodium sulfate</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Liu, Bingnan</creatorcontrib><creatorcontrib>Wang, Youxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Fu, Jian</creatorcontrib><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Ge, Liangpeng</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Lijuan</au><au>Liu, Bingnan</au><au>Wang, Youxia</au><au>Tang, Bin</au><au>Xu, Tianqi</au><au>Fu, Jian</au><au>Wang, Chuanlong</au><au>Liu, Yuan</au><au>Ge, Liangpeng</au><au>Wei, Hong</au><au>Ren, Wenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-10-08</date><risdate>2024</risdate><volume>121</volume><issue>41</issue><spage>e2413241121</spage><pages>e2413241121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal
-derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition,
delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39361652</pmid><doi>10.1073/pnas.2413241121</doi><orcidid>https://orcid.org/0000-0002-9622-6471</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (41), p.e2413241121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112857433 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Colitis Colitis - chemically induced Colitis - metabolism Colitis - microbiology Colon Colon - metabolism Colon - microbiology Colon cancer Colorectal carcinoma Colorectal Neoplasms - metabolism Colorectal Neoplasms - microbiology Dextran Dextran Sulfate Dextrans Digestive system Extracellular Vesicles - metabolism Gastrointestinal Microbiome Gastrointestinal tract Germfree Humans Intestinal microflora Lactobacillus Lactobacillus - genetics Lactobacillus - metabolism Mice Microbiota Microorganisms Polyamines Polyamines - metabolism Sodium sulfate Swine |
title | Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intestinal%20Lactobacillus%20murinus%20-derived%20small%20RNAs%20target%20porcine%20polyamine%20metabolism&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan,%20Lijuan&rft.date=2024-10-08&rft.volume=121&rft.issue=41&rft.spage=e2413241121&rft.pages=e2413241121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2413241121&rft_dat=%3Cproquest_cross%3E3112857433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116711402&rft_id=info:pmid/39361652&rfr_iscdi=true |