Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism

Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate hos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-10, Vol.121 (41), p.e2413241121
Hauptverfasser: Fan, Lijuan, Liu, Bingnan, Wang, Youxia, Tang, Bin, Xu, Tianqi, Fu, Jian, Wang, Chuanlong, Liu, Yuan, Ge, Liangpeng, Wei, Hong, Ren, Wenkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page e2413241121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Fan, Lijuan
Liu, Bingnan
Wang, Youxia
Tang, Bin
Xu, Tianqi
Fu, Jian
Wang, Chuanlong
Liu, Yuan
Ge, Liangpeng
Wei, Hong
Ren, Wenkai
description Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition, delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.
doi_str_mv 10.1073/pnas.2413241121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112857433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112857433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK2evUnAi5e0s49sssdSfBSKgih4C7vJRrZsHu4mQv97N7YqeBh-w_DNwHwIXWKYY0jpomuknxOGaShM8BGaYhA45kzAMZoCkDTOGGETdOb9FgBEksEpmlBBOeYJmaK3ddNr35tG2mgji75VsjDWDj6qB2eakHGpnfnUZeRraW30_Lj0US_du-6jrnWFaXRIu5P12NW6l6q1xtfn6KSS1uuLQ87Q693ty-oh3jzdr1fLTVyQBPo4KZUgZVllXEguKpkoBYxUQpIsCXPAmqm05BUFjDkXCoiQpUp5hdMioZjSGbrZ3-1c-zGEV_La-EJbKxvdDj6nwUuWpIyO6PU_dNsOLnz-TfEUYwYkUIs9VbjWe6ervHOmlm6XY8hH6fkoPf-THjauDncHVevyl_-xTL8AYkV9cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116711402</pqid></control><display><type>article</type><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</creator><creatorcontrib>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</creatorcontrib><description>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition, delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2413241121</identifier><identifier>PMID: 39361652</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Colitis ; Colitis - chemically induced ; Colitis - metabolism ; Colitis - microbiology ; Colon ; Colon - metabolism ; Colon - microbiology ; Colon cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - microbiology ; Dextran ; Dextran Sulfate ; Dextrans ; Digestive system ; Extracellular Vesicles - metabolism ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Germfree ; Humans ; Intestinal microflora ; Lactobacillus ; Lactobacillus - genetics ; Lactobacillus - metabolism ; Mice ; Microbiota ; Microorganisms ; Polyamines ; Polyamines - metabolism ; Sodium sulfate ; Swine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (41), p.e2413241121</ispartof><rights>Copyright National Academy of Sciences Oct 8, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</cites><orcidid>0000-0002-9622-6471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39361652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Liu, Bingnan</creatorcontrib><creatorcontrib>Wang, Youxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Fu, Jian</creatorcontrib><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Ge, Liangpeng</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition, delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</description><subject>Animals</subject><subject>Colitis</subject><subject>Colitis - chemically induced</subject><subject>Colitis - metabolism</subject><subject>Colitis - microbiology</subject><subject>Colon</subject><subject>Colon - metabolism</subject><subject>Colon - microbiology</subject><subject>Colon cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - microbiology</subject><subject>Dextran</subject><subject>Dextran Sulfate</subject><subject>Dextrans</subject><subject>Digestive system</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Germfree</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Lactobacillus</subject><subject>Lactobacillus - genetics</subject><subject>Lactobacillus - metabolism</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Polyamines</subject><subject>Polyamines - metabolism</subject><subject>Sodium sulfate</subject><subject>Swine</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMtLw0AQhxdRbK2evUnAi5e0s49sssdSfBSKgih4C7vJRrZsHu4mQv97N7YqeBh-w_DNwHwIXWKYY0jpomuknxOGaShM8BGaYhA45kzAMZoCkDTOGGETdOb9FgBEksEpmlBBOeYJmaK3ddNr35tG2mgji75VsjDWDj6qB2eakHGpnfnUZeRraW30_Lj0US_du-6jrnWFaXRIu5P12NW6l6q1xtfn6KSS1uuLQ87Q693ty-oh3jzdr1fLTVyQBPo4KZUgZVllXEguKpkoBYxUQpIsCXPAmqm05BUFjDkXCoiQpUp5hdMioZjSGbrZ3-1c-zGEV_La-EJbKxvdDj6nwUuWpIyO6PU_dNsOLnz-TfEUYwYkUIs9VbjWe6ervHOmlm6XY8hH6fkoPf-THjauDncHVevyl_-xTL8AYkV9cA</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Fan, Lijuan</creator><creator>Liu, Bingnan</creator><creator>Wang, Youxia</creator><creator>Tang, Bin</creator><creator>Xu, Tianqi</creator><creator>Fu, Jian</creator><creator>Wang, Chuanlong</creator><creator>Liu, Yuan</creator><creator>Ge, Liangpeng</creator><creator>Wei, Hong</creator><creator>Ren, Wenkai</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9622-6471</orcidid></search><sort><creationdate>20241008</creationdate><title>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</title><author>Fan, Lijuan ; Liu, Bingnan ; Wang, Youxia ; Tang, Bin ; Xu, Tianqi ; Fu, Jian ; Wang, Chuanlong ; Liu, Yuan ; Ge, Liangpeng ; Wei, Hong ; Ren, Wenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-5db92ddf869a69fa5bb042f9a2852dd01e4b7d6f3011669b029adb76f17c53133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Colitis</topic><topic>Colitis - chemically induced</topic><topic>Colitis - metabolism</topic><topic>Colitis - microbiology</topic><topic>Colon</topic><topic>Colon - metabolism</topic><topic>Colon - microbiology</topic><topic>Colon cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - microbiology</topic><topic>Dextran</topic><topic>Dextran Sulfate</topic><topic>Dextrans</topic><topic>Digestive system</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Germfree</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Lactobacillus</topic><topic>Lactobacillus - genetics</topic><topic>Lactobacillus - metabolism</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Polyamines</topic><topic>Polyamines - metabolism</topic><topic>Sodium sulfate</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Liu, Bingnan</creatorcontrib><creatorcontrib>Wang, Youxia</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Fu, Jian</creatorcontrib><creatorcontrib>Wang, Chuanlong</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Ge, Liangpeng</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Lijuan</au><au>Liu, Bingnan</au><au>Wang, Youxia</au><au>Tang, Bin</au><au>Xu, Tianqi</au><au>Fu, Jian</au><au>Wang, Chuanlong</au><au>Liu, Yuan</au><au>Ge, Liangpeng</au><au>Wei, Hong</au><au>Ren, Wenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-10-08</date><risdate>2024</risdate><volume>121</volume><issue>41</issue><spage>e2413241121</spage><pages>e2413241121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal -derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition, delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39361652</pmid><doi>10.1073/pnas.2413241121</doi><orcidid>https://orcid.org/0000-0002-9622-6471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (41), p.e2413241121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_miscellaneous_3112857433
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Colitis
Colitis - chemically induced
Colitis - metabolism
Colitis - microbiology
Colon
Colon - metabolism
Colon - microbiology
Colon cancer
Colorectal carcinoma
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - microbiology
Dextran
Dextran Sulfate
Dextrans
Digestive system
Extracellular Vesicles - metabolism
Gastrointestinal Microbiome
Gastrointestinal tract
Germfree
Humans
Intestinal microflora
Lactobacillus
Lactobacillus - genetics
Lactobacillus - metabolism
Mice
Microbiota
Microorganisms
Polyamines
Polyamines - metabolism
Sodium sulfate
Swine
title Intestinal Lactobacillus murinus -derived small RNAs target porcine polyamine metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intestinal%20Lactobacillus%20murinus%20-derived%20small%20RNAs%20target%20porcine%20polyamine%20metabolism&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan,%20Lijuan&rft.date=2024-10-08&rft.volume=121&rft.issue=41&rft.spage=e2413241121&rft.pages=e2413241121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2413241121&rft_dat=%3Cproquest_cross%3E3112857433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116711402&rft_id=info:pmid/39361652&rfr_iscdi=true