Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations

Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-10, Vol.20 (20), p.8940-8947
Hauptverfasser: Cianci, Cameron, Santos, Lea F., Batista, Victor S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8947
container_issue 20
container_start_page 8940
container_title Journal of chemical theory and computation
container_volume 20
creator Cianci, Cameron
Santos, Lea F.
Batista, Victor S.
description Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.
doi_str_mv 10.1021/acs.jctc.4c00915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112512789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112512789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7vnqTgxYOdSb6mSY4ypg4GQzbPJU0T7eiP2TSi_72ZmzsInvJBnvfNlwehS4LHBFNyp7Qbr3Wvx4nGWBJ2hIaEJTKWKU2PDzMRA3Tm3BpjgITCKRqABEZ5KodosfS52yht4qVRnX6Lnr1qel9Hs1q9lo3qvqJVWZto-tFWvi_bJrJtF00_ddmbIlr2qjfRpK03Pkzh1p2jE6sqZy725wi9PExXk6d4vnicTe7nsaIJ7-NU5illiRCWArFY65wTAA4alAYpLE6KQhMmjEoKmzIjTGExBbBUqIKRBEboZte76dp3b1yf1aXTpqpUY1rvMiCEMkK5kAG9_oOuW981YbtAUQ6cEw6BwjtKd61znbHZpivr8P-M4GwrOwuys63sbC87RK72xT6vTXEI_NoNwO0O-In-Pvpv3zf0jIpe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127377173</pqid></control><display><type>article</type><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><source>ACS Publications</source><creator>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</creator><creatorcontrib>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</creatorcontrib><description>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00915</identifier><identifier>PMID: 39352769</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Evolution ; Excitation ; Quantum Electronic Structure ; Robustness ; Searching ; Subspaces ; System effectiveness</subject><ispartof>Journal of chemical theory and computation, 2024-10, Vol.20 (20), p.8940-8947</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 22, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</cites><orcidid>0000-0002-3262-1237 ; 0000-0001-5617-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00915$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00915$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39352769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cianci, Cameron</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</description><subject>Algorithms</subject><subject>Evolution</subject><subject>Excitation</subject><subject>Quantum Electronic Structure</subject><subject>Robustness</subject><subject>Searching</subject><subject>Subspaces</subject><subject>System effectiveness</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7vnqTgxYOdSb6mSY4ypg4GQzbPJU0T7eiP2TSi_72ZmzsInvJBnvfNlwehS4LHBFNyp7Qbr3Wvx4nGWBJ2hIaEJTKWKU2PDzMRA3Tm3BpjgITCKRqABEZ5KodosfS52yht4qVRnX6Lnr1qel9Hs1q9lo3qvqJVWZto-tFWvi_bJrJtF00_ddmbIlr2qjfRpK03Pkzh1p2jE6sqZy725wi9PExXk6d4vnicTe7nsaIJ7-NU5illiRCWArFY65wTAA4alAYpLE6KQhMmjEoKmzIjTGExBbBUqIKRBEboZte76dp3b1yf1aXTpqpUY1rvMiCEMkK5kAG9_oOuW981YbtAUQ6cEw6BwjtKd61znbHZpivr8P-M4GwrOwuys63sbC87RK72xT6vTXEI_NoNwO0O-In-Pvpv3zf0jIpe</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Cianci, Cameron</creator><creator>Santos, Lea F.</creator><creator>Batista, Victor S.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><orcidid>https://orcid.org/0000-0001-5617-0293</orcidid></search><sort><creationdate>20241022</creationdate><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><author>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Evolution</topic><topic>Excitation</topic><topic>Quantum Electronic Structure</topic><topic>Robustness</topic><topic>Searching</topic><topic>Subspaces</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cianci, Cameron</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianci, Cameron</au><au>Santos, Lea F.</au><au>Batista, Victor S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>20</volume><issue>20</issue><spage>8940</spage><epage>8947</epage><pages>8940-8947</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39352769</pmid><doi>10.1021/acs.jctc.4c00915</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><orcidid>https://orcid.org/0000-0001-5617-0293</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-10, Vol.20 (20), p.8940-8947
issn 1549-9618
1549-9626
1549-9626
language eng
recordid cdi_proquest_miscellaneous_3112512789
source ACS Publications
subjects Algorithms
Evolution
Excitation
Quantum Electronic Structure
Robustness
Searching
Subspaces
System effectiveness
title Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace-Search%20Quantum%20Imaginary%20Time%20Evolution%20for%20Excited%20State%20Computations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cianci,%20Cameron&rft.date=2024-10-22&rft.volume=20&rft.issue=20&rft.spage=8940&rft.epage=8947&rft.pages=8940-8947&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00915&rft_dat=%3Cproquest_cross%3E3112512789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127377173&rft_id=info:pmid/39352769&rfr_iscdi=true