Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations
Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the stud...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-10, Vol.20 (20), p.8940-8947 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8947 |
---|---|
container_issue | 20 |
container_start_page | 8940 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Cianci, Cameron Santos, Lea F. Batista, Victor S. |
description | Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications. |
doi_str_mv | 10.1021/acs.jctc.4c00915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112512789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112512789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7vnqTgxYOdSb6mSY4ypg4GQzbPJU0T7eiP2TSi_72ZmzsInvJBnvfNlwehS4LHBFNyp7Qbr3Wvx4nGWBJ2hIaEJTKWKU2PDzMRA3Tm3BpjgITCKRqABEZ5KodosfS52yht4qVRnX6Lnr1qel9Hs1q9lo3qvqJVWZto-tFWvi_bJrJtF00_ddmbIlr2qjfRpK03Pkzh1p2jE6sqZy725wi9PExXk6d4vnicTe7nsaIJ7-NU5illiRCWArFY65wTAA4alAYpLE6KQhMmjEoKmzIjTGExBbBUqIKRBEboZte76dp3b1yf1aXTpqpUY1rvMiCEMkK5kAG9_oOuW981YbtAUQ6cEw6BwjtKd61znbHZpivr8P-M4GwrOwuys63sbC87RK72xT6vTXEI_NoNwO0O-In-Pvpv3zf0jIpe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127377173</pqid></control><display><type>article</type><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><source>ACS Publications</source><creator>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</creator><creatorcontrib>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</creatorcontrib><description>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00915</identifier><identifier>PMID: 39352769</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Evolution ; Excitation ; Quantum Electronic Structure ; Robustness ; Searching ; Subspaces ; System effectiveness</subject><ispartof>Journal of chemical theory and computation, 2024-10, Vol.20 (20), p.8940-8947</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 22, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</cites><orcidid>0000-0002-3262-1237 ; 0000-0001-5617-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00915$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00915$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39352769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cianci, Cameron</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</description><subject>Algorithms</subject><subject>Evolution</subject><subject>Excitation</subject><subject>Quantum Electronic Structure</subject><subject>Robustness</subject><subject>Searching</subject><subject>Subspaces</subject><subject>System effectiveness</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7vnqTgxYOdSb6mSY4ypg4GQzbPJU0T7eiP2TSi_72ZmzsInvJBnvfNlwehS4LHBFNyp7Qbr3Wvx4nGWBJ2hIaEJTKWKU2PDzMRA3Tm3BpjgITCKRqABEZ5KodosfS52yht4qVRnX6Lnr1qel9Hs1q9lo3qvqJVWZto-tFWvi_bJrJtF00_ddmbIlr2qjfRpK03Pkzh1p2jE6sqZy725wi9PExXk6d4vnicTe7nsaIJ7-NU5illiRCWArFY65wTAA4alAYpLE6KQhMmjEoKmzIjTGExBbBUqIKRBEboZte76dp3b1yf1aXTpqpUY1rvMiCEMkK5kAG9_oOuW981YbtAUQ6cEw6BwjtKd61znbHZpivr8P-M4GwrOwuys63sbC87RK72xT6vTXEI_NoNwO0O-In-Pvpv3zf0jIpe</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Cianci, Cameron</creator><creator>Santos, Lea F.</creator><creator>Batista, Victor S.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><orcidid>https://orcid.org/0000-0001-5617-0293</orcidid></search><sort><creationdate>20241022</creationdate><title>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</title><author>Cianci, Cameron ; Santos, Lea F. ; Batista, Victor S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-69b625488f231f0ccb713373c3ac398f04ddc158ea4df65e8edf0233f28ad5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Evolution</topic><topic>Excitation</topic><topic>Quantum Electronic Structure</topic><topic>Robustness</topic><topic>Searching</topic><topic>Subspaces</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cianci, Cameron</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cianci, Cameron</au><au>Santos, Lea F.</au><au>Batista, Victor S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>20</volume><issue>20</issue><spage>8940</spage><epage>8947</epage><pages>8940-8947</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>Quantum systems in excited states are attracting significant interest with the advent of noisy intermediate-scale quantum (NISQ) devices. While ground states of small molecular systems are typically explored using hybrid variational algorithms like the variational quantum eigensolver (VQE), the study of excited states has received much less attention, partly due to the absence of efficient algorithms. In this work, we introduce the subspace search quantum imaginary time evolution (SSQITE) method, which calculates excited states using quantum devices by integrating key elements of the subspace search variational quantum eigensolver (SSVQE) and the variational quantum imaginary time evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms. With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across a wide range of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39352769</pmid><doi>10.1021/acs.jctc.4c00915</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><orcidid>https://orcid.org/0000-0001-5617-0293</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-10, Vol.20 (20), p.8940-8947 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112512789 |
source | ACS Publications |
subjects | Algorithms Evolution Excitation Quantum Electronic Structure Robustness Searching Subspaces System effectiveness |
title | Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace-Search%20Quantum%20Imaginary%20Time%20Evolution%20for%20Excited%20State%20Computations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cianci,%20Cameron&rft.date=2024-10-22&rft.volume=20&rft.issue=20&rft.spage=8940&rft.epage=8947&rft.pages=8940-8947&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00915&rft_dat=%3Cproquest_cross%3E3112512789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127377173&rft_id=info:pmid/39352769&rfr_iscdi=true |