A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification
Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using therm...
Gespeichert in:
Veröffentlicht in: | Journal of imaging informatics in medicine 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of imaging informatics in medicine |
container_volume | |
creator | Nguyen Chi, Thanh Le Thi Thu, Hong Doan Quang, Tu Taniar, David |
description | Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square (
) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at
. Furthermore, the highest accuracy improvement obtained was
when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis. |
doi_str_mv | 10.1007/s10278-024-01269-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112118269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112118269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-b5bd66b7dfdfb18402df8b362b98706fc1a36e0c6e38e9b0c0c1b3fc25bf495e3</originalsourceid><addsrcrecordid>eNpNkMtOAjEUhhujEYK8gAvTpZvRXqDMLBFBSRA2sG7azilTw8xgW0Jw6ZM7CBo355b_fIsPoVtKHighg8dACRukCWG9hFAmskRcoDbLemnCMs4v_80t1A3hnRDCOeVckGvU4hnvCy6yNvoa4plbF3EPx4rfIBZ1jm3t8ZMHFSIeqcqAx88QwURXV3gVXLXGywJ8Wa-92hYHPC3VGgLeu1jgxTa60n1CjkfzOZ6AijsPWFU5HlvrjIOqYW5UCK7Z1JF4g66s2gTonnsHrSbj5eg1mS1epqPhLDE07cVE93UuhB7kNre6uRCW21RzwXSWDoiwhiougBgBPIVME0MM1dwa1te2l_WBd9D9ibv19ccOQpSlCwY2G1VBvQuSU8ooTRuXTZSdosbXIXiwcutdqfxBUiKP-uVJv2z0yx_9UjRPd2f-TpeQ_738yubfBxKCBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112118269</pqid></control><display><type>article</type><title>A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification</title><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Nguyen Chi, Thanh ; Le Thi Thu, Hong ; Doan Quang, Tu ; Taniar, David</creator><creatorcontrib>Nguyen Chi, Thanh ; Le Thi Thu, Hong ; Doan Quang, Tu ; Taniar, David</creatorcontrib><description>Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square (
) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at
. Furthermore, the highest accuracy improvement obtained was
when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis.</description><identifier>ISSN: 2948-2933</identifier><identifier>EISSN: 2948-2933</identifier><identifier>DOI: 10.1007/s10278-024-01269-6</identifier><identifier>PMID: 39356369</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Journal of imaging informatics in medicine, 2024-10</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-b5bd66b7dfdfb18402df8b362b98706fc1a36e0c6e38e9b0c0c1b3fc25bf495e3</cites><orcidid>0000-0003-4335-7002 ; 0000-0002-5065-5545 ; 0000-0002-1399-2585 ; 0000-0002-8862-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39356369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen Chi, Thanh</creatorcontrib><creatorcontrib>Le Thi Thu, Hong</creatorcontrib><creatorcontrib>Doan Quang, Tu</creatorcontrib><creatorcontrib>Taniar, David</creatorcontrib><title>A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification</title><title>Journal of imaging informatics in medicine</title><addtitle>J Imaging Inform Med</addtitle><description>Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square (
) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at
. Furthermore, the highest accuracy improvement obtained was
when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis.</description><issn>2948-2933</issn><issn>2948-2933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOAjEUhhujEYK8gAvTpZvRXqDMLBFBSRA2sG7azilTw8xgW0Jw6ZM7CBo355b_fIsPoVtKHighg8dACRukCWG9hFAmskRcoDbLemnCMs4v_80t1A3hnRDCOeVckGvU4hnvCy6yNvoa4plbF3EPx4rfIBZ1jm3t8ZMHFSIeqcqAx88QwURXV3gVXLXGywJ8Wa-92hYHPC3VGgLeu1jgxTa60n1CjkfzOZ6AijsPWFU5HlvrjIOqYW5UCK7Z1JF4g66s2gTonnsHrSbj5eg1mS1epqPhLDE07cVE93UuhB7kNre6uRCW21RzwXSWDoiwhiougBgBPIVME0MM1dwa1te2l_WBd9D9ibv19ccOQpSlCwY2G1VBvQuSU8ooTRuXTZSdosbXIXiwcutdqfxBUiKP-uVJv2z0yx_9UjRPd2f-TpeQ_738yubfBxKCBg</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Nguyen Chi, Thanh</creator><creator>Le Thi Thu, Hong</creator><creator>Doan Quang, Tu</creator><creator>Taniar, David</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4335-7002</orcidid><orcidid>https://orcid.org/0000-0002-5065-5545</orcidid><orcidid>https://orcid.org/0000-0002-1399-2585</orcidid><orcidid>https://orcid.org/0000-0002-8862-3960</orcidid></search><sort><creationdate>20241002</creationdate><title>A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification</title><author>Nguyen Chi, Thanh ; Le Thi Thu, Hong ; Doan Quang, Tu ; Taniar, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-b5bd66b7dfdfb18402df8b362b98706fc1a36e0c6e38e9b0c0c1b3fc25bf495e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen Chi, Thanh</creatorcontrib><creatorcontrib>Le Thi Thu, Hong</creatorcontrib><creatorcontrib>Doan Quang, Tu</creatorcontrib><creatorcontrib>Taniar, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of imaging informatics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen Chi, Thanh</au><au>Le Thi Thu, Hong</au><au>Doan Quang, Tu</au><au>Taniar, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification</atitle><jtitle>Journal of imaging informatics in medicine</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-10-02</date><risdate>2024</risdate><issn>2948-2933</issn><eissn>2948-2933</eissn><abstract>Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square (
) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at
. Furthermore, the highest accuracy improvement obtained was
when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis.</abstract><cop>Switzerland</cop><pmid>39356369</pmid><doi>10.1007/s10278-024-01269-6</doi><orcidid>https://orcid.org/0000-0003-4335-7002</orcidid><orcidid>https://orcid.org/0000-0002-5065-5545</orcidid><orcidid>https://orcid.org/0000-0002-1399-2585</orcidid><orcidid>https://orcid.org/0000-0002-8862-3960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2948-2933 |
ispartof | Journal of imaging informatics in medicine, 2024-10 |
issn | 2948-2933 2948-2933 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112118269 |
source | Springer Nature - Complete Springer Journals; PubMed Central |
title | A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Method%20for%20Breast%20Cancer%20Detection%20Using%20Thermography%20Images%20with%20Optimized%20CNN%20Feature%20and%20Efficient%20Classification&rft.jtitle=Journal%20of%20imaging%20informatics%20in%20medicine&rft.au=Nguyen%20Chi,%20Thanh&rft.date=2024-10-02&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01269-6&rft_dat=%3Cproquest_cross%3E3112118269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112118269&rft_id=info:pmid/39356369&rfr_iscdi=true |