Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics....
Gespeichert in:
Veröffentlicht in: | Translational research : the journal of laboratory and clinical medicine 2024-12, Vol.274, p.67-80 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Translational research : the journal of laboratory and clinical medicine |
container_volume | 274 |
creator | Bartels, Helena C Hameed, Sodiq Young, Constance Nabhan, Myriam Downey, Paul Curran, Kathleen M McCormack, Janet Fabre, Aurelie Kolch, Walter Zhernovkov, Vadim Brennan, Donal J |
description | In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial–mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring. |
doi_str_mv | 10.1016/j.trsl.2024.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111636288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1931524424001725</els_id><sourcerecordid>3111636288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-ecbfc56814166991eff4f0ea58a49737bdbb2be7f90267ae02fae68461787de03</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMo7vr4Ax5kjl5mTGeymQS8iPgCwYN6DplMB7PMyyQr-O_NsurRU1cnVQX9EXIGtAIK4nJdpRD7ilHGK6oqSvkeWYJsZAkS6H7WqoZyxThfkKMY19kgFOWHZFGrmisQqyWxL7NJ3vTFHKaE0-BtLMzYFSmYMdrg57R7m1yR3rEYTMIwmr50mHLIj3l1xmJWxdxnMSZTGGtD_i7ijDaFzXBCDpzpI57-zGPydnf7evNQPj3fP95cP5WWSUgl2tbZlZDAQQilAJ3jjqJZScNVUzdt17asxcYpykRjkDJnUEguoJFNh7Q-Jhe73nzLxwZj0oOPFvvejDhtoq4BQNSCSZmtbGe1YYoxoNNz8IMJXxqo3sLVa72Fq7dwNVU6s8uh85_-TTtg9xf5pZkNVzsD5is_PQYdrcfRYudDRqG7yf_X_w0oX41j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111636288</pqid></control><display><type>article</type><title>Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum</title><source>Elsevier ScienceDirect Journals</source><creator>Bartels, Helena C ; Hameed, Sodiq ; Young, Constance ; Nabhan, Myriam ; Downey, Paul ; Curran, Kathleen M ; McCormack, Janet ; Fabre, Aurelie ; Kolch, Walter ; Zhernovkov, Vadim ; Brennan, Donal J</creator><creatorcontrib>Bartels, Helena C ; Hameed, Sodiq ; Young, Constance ; Nabhan, Myriam ; Downey, Paul ; Curran, Kathleen M ; McCormack, Janet ; Fabre, Aurelie ; Kolch, Walter ; Zhernovkov, Vadim ; Brennan, Donal J</creatorcontrib><description>In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial–mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.</description><identifier>ISSN: 1931-5244</identifier><identifier>ISSN: 1878-1810</identifier><identifier>EISSN: 1878-1810</identifier><identifier>DOI: 10.1016/j.trsl.2024.09.004</identifier><identifier>PMID: 39349165</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Multi-omics ; Placenta accreta spectrum ; Spatial proteomics ; Spatial transcriptomics</subject><ispartof>Translational research : the journal of laboratory and clinical medicine, 2024-12, Vol.274, p.67-80</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-ecbfc56814166991eff4f0ea58a49737bdbb2be7f90267ae02fae68461787de03</cites><orcidid>0000-0002-6470-9364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931524424001725$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39349165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartels, Helena C</creatorcontrib><creatorcontrib>Hameed, Sodiq</creatorcontrib><creatorcontrib>Young, Constance</creatorcontrib><creatorcontrib>Nabhan, Myriam</creatorcontrib><creatorcontrib>Downey, Paul</creatorcontrib><creatorcontrib>Curran, Kathleen M</creatorcontrib><creatorcontrib>McCormack, Janet</creatorcontrib><creatorcontrib>Fabre, Aurelie</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Zhernovkov, Vadim</creatorcontrib><creatorcontrib>Brennan, Donal J</creatorcontrib><title>Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum</title><title>Translational research : the journal of laboratory and clinical medicine</title><addtitle>Transl Res</addtitle><description>In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial–mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.</description><subject>Multi-omics</subject><subject>Placenta accreta spectrum</subject><subject>Spatial proteomics</subject><subject>Spatial transcriptomics</subject><issn>1931-5244</issn><issn>1878-1810</issn><issn>1878-1810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMo7vr4Ax5kjl5mTGeymQS8iPgCwYN6DplMB7PMyyQr-O_NsurRU1cnVQX9EXIGtAIK4nJdpRD7ilHGK6oqSvkeWYJsZAkS6H7WqoZyxThfkKMY19kgFOWHZFGrmisQqyWxL7NJ3vTFHKaE0-BtLMzYFSmYMdrg57R7m1yR3rEYTMIwmr50mHLIj3l1xmJWxdxnMSZTGGtD_i7ijDaFzXBCDpzpI57-zGPydnf7evNQPj3fP95cP5WWSUgl2tbZlZDAQQilAJ3jjqJZScNVUzdt17asxcYpykRjkDJnUEguoJFNh7Q-Jhe73nzLxwZj0oOPFvvejDhtoq4BQNSCSZmtbGe1YYoxoNNz8IMJXxqo3sLVa72Fq7dwNVU6s8uh85_-TTtg9xf5pZkNVzsD5is_PQYdrcfRYudDRqG7yf_X_w0oX41j</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Bartels, Helena C</creator><creator>Hameed, Sodiq</creator><creator>Young, Constance</creator><creator>Nabhan, Myriam</creator><creator>Downey, Paul</creator><creator>Curran, Kathleen M</creator><creator>McCormack, Janet</creator><creator>Fabre, Aurelie</creator><creator>Kolch, Walter</creator><creator>Zhernovkov, Vadim</creator><creator>Brennan, Donal J</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6470-9364</orcidid></search><sort><creationdate>202412</creationdate><title>Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum</title><author>Bartels, Helena C ; Hameed, Sodiq ; Young, Constance ; Nabhan, Myriam ; Downey, Paul ; Curran, Kathleen M ; McCormack, Janet ; Fabre, Aurelie ; Kolch, Walter ; Zhernovkov, Vadim ; Brennan, Donal J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-ecbfc56814166991eff4f0ea58a49737bdbb2be7f90267ae02fae68461787de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Multi-omics</topic><topic>Placenta accreta spectrum</topic><topic>Spatial proteomics</topic><topic>Spatial transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartels, Helena C</creatorcontrib><creatorcontrib>Hameed, Sodiq</creatorcontrib><creatorcontrib>Young, Constance</creatorcontrib><creatorcontrib>Nabhan, Myriam</creatorcontrib><creatorcontrib>Downey, Paul</creatorcontrib><creatorcontrib>Curran, Kathleen M</creatorcontrib><creatorcontrib>McCormack, Janet</creatorcontrib><creatorcontrib>Fabre, Aurelie</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Zhernovkov, Vadim</creatorcontrib><creatorcontrib>Brennan, Donal J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Translational research : the journal of laboratory and clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartels, Helena C</au><au>Hameed, Sodiq</au><au>Young, Constance</au><au>Nabhan, Myriam</au><au>Downey, Paul</au><au>Curran, Kathleen M</au><au>McCormack, Janet</au><au>Fabre, Aurelie</au><au>Kolch, Walter</au><au>Zhernovkov, Vadim</au><au>Brennan, Donal J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum</atitle><jtitle>Translational research : the journal of laboratory and clinical medicine</jtitle><addtitle>Transl Res</addtitle><date>2024-12</date><risdate>2024</risdate><volume>274</volume><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>1931-5244</issn><issn>1878-1810</issn><eissn>1878-1810</eissn><abstract>In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial–mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39349165</pmid><doi>10.1016/j.trsl.2024.09.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6470-9364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-5244 |
ispartof | Translational research : the journal of laboratory and clinical medicine, 2024-12, Vol.274, p.67-80 |
issn | 1931-5244 1878-1810 1878-1810 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111636288 |
source | Elsevier ScienceDirect Journals |
subjects | Multi-omics Placenta accreta spectrum Spatial proteomics Spatial transcriptomics |
title | Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20proteomics%20and%20transcriptomics%20of%20the%20maternal-fetal%20interface%20in%20placenta%20accreta%20spectrum&rft.jtitle=Translational%20research%20:%20the%20journal%20of%20laboratory%20and%20clinical%20medicine&rft.au=Bartels,%20Helena%20C&rft.date=2024-12&rft.volume=274&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=1931-5244&rft.eissn=1878-1810&rft_id=info:doi/10.1016/j.trsl.2024.09.004&rft_dat=%3Cproquest_cross%3E3111636288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111636288&rft_id=info:pmid/39349165&rft_els_id=S1931524424001725&rfr_iscdi=true |