Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease
Mild cognitive impairment (MCI) confers a high annual risk of 10–15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzhei...
Gespeichert in:
Veröffentlicht in: | Progress in neuro-psychopharmacology & biological psychiatry 2025-01, Vol.136, p.111157, Article 111157 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111157 |
container_title | Progress in neuro-psychopharmacology & biological psychiatry |
container_volume | 136 |
creator | Defrancesco, Michaela Marksteiner, Josef Lenhart, Lukas Klingler, Paul Steiger, Ruth Gizewski, Elke R. Goebel, Georg Deisenhammer, Eberhard A. Scherfler, Christoph |
description | Mild cognitive impairment (MCI) confers a high annual risk of 10–15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzheimer's disease.
The aim of the present study was to combine automated ROI MRI morphometry of hippocampal subfield volumes and cortical thickness estimates using FreeSurfer 6.0 with cognitive measures to predict disease progression and time to conversion from MCI to AD dementia.
Baseline (Neuropsychology, MRI) and clinical follow-up data from 62 MCI patients were analysed retrospectively. Individual cortical thickness and volumetric measures were obtained from T1-weighted MRI. Linear discriminant analysis (LDA) of both, cognitive measures and MRI measures (hippocampal subfields, temporal and parietal lobe volumes), were performed to differentiate MCI converters from stable MCI patients.
Out of 62 MCI patients 21 (34 %) converted to AD dementia within a mean follow-up time of 74.7 ± 36.8 months (mean ± SD, range 12 to 130 months). LDA identified temporal lobe atrophy and hippocampal subfield volumes in combination with cognitive measures of verbal memory, verbal fluency and executive functions to correctly classify 71.4.% of MCI subjects converting to AD dementia and 92.7 % with stable MCI. Lower baseline GM volume of the subiculum and the superior temporal gyrus was associated with faster disease progression of MCI converters.
Combining cognitive assessment with automated ROI MRI morphometry is superior to using a single test in order to distinguish MCI due to AD from non converting MCI patients.
•A combination of neuropsychological and MRI parameter can predict Alzheimer's dementia.•Fast disease progression of early Alzheimer dementia is associated with lower gray matter volume of temporal regions.•Long-term follow-up studies are essential for classifying the aetiology of Mild Cognitive Impairment. |
doi_str_mv | 10.1016/j.pnpbp.2024.111157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111635300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0278584624002252</els_id><sourcerecordid>3111635300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-8ff9d61b6c5d644a51d135010bebe150591b3c5d14cf178b12942f16755687cc3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EoqHwBEjIN7gkeNbr_XPgUEWFRmqFhOBsee3Z1NHaXmxvpPAAPDcuaTniiy3N7_PMfB8hb4FtgEHz8bCZ_TzMm4pV9QbKEe0zsoKu7dZ1Bc1zsmJVeYuubi7Iq5QOjDHgjL8kF7zndV-YFfm9DW6wHg3VYe9ttkekKiVMyaHPVHlD1ZKDU7kgd9929BimxWGOJ2rdHMMRE833SI1Vex9StpoqrZeo9ImGkRrMqLP1e3q33VGzIM2BXk2_7tE6jO9T0SVUCV-TF6OaEr55vC_Jj8_X37c369uvX3bbq9u1rnif19049qaBodHCNHWtBBjgggEbcEAQTPQw8FKDWo_QdgNUfV2N0LRCNF2rNb8kH87_ltF_LpiydDZpnCblMSxJ8mJjwwVnrKD8jOoYUoo4yjlap-JJApMPAciD_BuAfAhAngMoqnePDZbBofmneXK8AJ_OAJY1jxajTNqi12hsLFZJE-x_G_wBV0GZSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111635300</pqid></control><display><type>article</type><title>Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Defrancesco, Michaela ; Marksteiner, Josef ; Lenhart, Lukas ; Klingler, Paul ; Steiger, Ruth ; Gizewski, Elke R. ; Goebel, Georg ; Deisenhammer, Eberhard A. ; Scherfler, Christoph</creator><creatorcontrib>Defrancesco, Michaela ; Marksteiner, Josef ; Lenhart, Lukas ; Klingler, Paul ; Steiger, Ruth ; Gizewski, Elke R. ; Goebel, Georg ; Deisenhammer, Eberhard A. ; Scherfler, Christoph</creatorcontrib><description>Mild cognitive impairment (MCI) confers a high annual risk of 10–15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzheimer's disease.
The aim of the present study was to combine automated ROI MRI morphometry of hippocampal subfield volumes and cortical thickness estimates using FreeSurfer 6.0 with cognitive measures to predict disease progression and time to conversion from MCI to AD dementia.
Baseline (Neuropsychology, MRI) and clinical follow-up data from 62 MCI patients were analysed retrospectively. Individual cortical thickness and volumetric measures were obtained from T1-weighted MRI. Linear discriminant analysis (LDA) of both, cognitive measures and MRI measures (hippocampal subfields, temporal and parietal lobe volumes), were performed to differentiate MCI converters from stable MCI patients.
Out of 62 MCI patients 21 (34 %) converted to AD dementia within a mean follow-up time of 74.7 ± 36.8 months (mean ± SD, range 12 to 130 months). LDA identified temporal lobe atrophy and hippocampal subfield volumes in combination with cognitive measures of verbal memory, verbal fluency and executive functions to correctly classify 71.4.% of MCI subjects converting to AD dementia and 92.7 % with stable MCI. Lower baseline GM volume of the subiculum and the superior temporal gyrus was associated with faster disease progression of MCI converters.
Combining cognitive assessment with automated ROI MRI morphometry is superior to using a single test in order to distinguish MCI due to AD from non converting MCI patients.
•A combination of neuropsychological and MRI parameter can predict Alzheimer's dementia.•Fast disease progression of early Alzheimer dementia is associated with lower gray matter volume of temporal regions.•Long-term follow-up studies are essential for classifying the aetiology of Mild Cognitive Impairment.</description><identifier>ISSN: 0278-5846</identifier><identifier>ISSN: 1878-4216</identifier><identifier>EISSN: 1878-4216</identifier><identifier>DOI: 10.1016/j.pnpbp.2024.111157</identifier><identifier>PMID: 39349216</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - pathology ; Alzheimer's disease ; Atrophy - pathology ; Cognitive assessment ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - pathology ; Cortical atrophy ; Disease Progression ; Female ; Follow-Up Studies ; Hippocampus - diagnostic imaging ; Hippocampus - pathology ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Mild cognitive impairment ; Neuropsychological Tests ; Retrospective Studies ; Structural neuroimaging</subject><ispartof>Progress in neuro-psychopharmacology & biological psychiatry, 2025-01, Vol.136, p.111157, Article 111157</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-8ff9d61b6c5d644a51d135010bebe150591b3c5d14cf178b12942f16755687cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0278584624002252$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39349216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Defrancesco, Michaela</creatorcontrib><creatorcontrib>Marksteiner, Josef</creatorcontrib><creatorcontrib>Lenhart, Lukas</creatorcontrib><creatorcontrib>Klingler, Paul</creatorcontrib><creatorcontrib>Steiger, Ruth</creatorcontrib><creatorcontrib>Gizewski, Elke R.</creatorcontrib><creatorcontrib>Goebel, Georg</creatorcontrib><creatorcontrib>Deisenhammer, Eberhard A.</creatorcontrib><creatorcontrib>Scherfler, Christoph</creatorcontrib><title>Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease</title><title>Progress in neuro-psychopharmacology & biological psychiatry</title><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><description>Mild cognitive impairment (MCI) confers a high annual risk of 10–15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzheimer's disease.
The aim of the present study was to combine automated ROI MRI morphometry of hippocampal subfield volumes and cortical thickness estimates using FreeSurfer 6.0 with cognitive measures to predict disease progression and time to conversion from MCI to AD dementia.
Baseline (Neuropsychology, MRI) and clinical follow-up data from 62 MCI patients were analysed retrospectively. Individual cortical thickness and volumetric measures were obtained from T1-weighted MRI. Linear discriminant analysis (LDA) of both, cognitive measures and MRI measures (hippocampal subfields, temporal and parietal lobe volumes), were performed to differentiate MCI converters from stable MCI patients.
Out of 62 MCI patients 21 (34 %) converted to AD dementia within a mean follow-up time of 74.7 ± 36.8 months (mean ± SD, range 12 to 130 months). LDA identified temporal lobe atrophy and hippocampal subfield volumes in combination with cognitive measures of verbal memory, verbal fluency and executive functions to correctly classify 71.4.% of MCI subjects converting to AD dementia and 92.7 % with stable MCI. Lower baseline GM volume of the subiculum and the superior temporal gyrus was associated with faster disease progression of MCI converters.
Combining cognitive assessment with automated ROI MRI morphometry is superior to using a single test in order to distinguish MCI due to AD from non converting MCI patients.
•A combination of neuropsychological and MRI parameter can predict Alzheimer's dementia.•Fast disease progression of early Alzheimer dementia is associated with lower gray matter volume of temporal regions.•Long-term follow-up studies are essential for classifying the aetiology of Mild Cognitive Impairment.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Atrophy - pathology</subject><subject>Cognitive assessment</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cortical atrophy</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mild cognitive impairment</subject><subject>Neuropsychological Tests</subject><subject>Retrospective Studies</subject><subject>Structural neuroimaging</subject><issn>0278-5846</issn><issn>1878-4216</issn><issn>1878-4216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQxi0EoqHwBEjIN7gkeNbr_XPgUEWFRmqFhOBsee3Z1NHaXmxvpPAAPDcuaTniiy3N7_PMfB8hb4FtgEHz8bCZ_TzMm4pV9QbKEe0zsoKu7dZ1Bc1zsmJVeYuubi7Iq5QOjDHgjL8kF7zndV-YFfm9DW6wHg3VYe9ttkekKiVMyaHPVHlD1ZKDU7kgd9929BimxWGOJ2rdHMMRE833SI1Vex9StpoqrZeo9ImGkRrMqLP1e3q33VGzIM2BXk2_7tE6jO9T0SVUCV-TF6OaEr55vC_Jj8_X37c369uvX3bbq9u1rnif19049qaBodHCNHWtBBjgggEbcEAQTPQw8FKDWo_QdgNUfV2N0LRCNF2rNb8kH87_ltF_LpiydDZpnCblMSxJ8mJjwwVnrKD8jOoYUoo4yjlap-JJApMPAciD_BuAfAhAngMoqnePDZbBofmneXK8AJ_OAJY1jxajTNqi12hsLFZJE-x_G_wBV0GZSg</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Defrancesco, Michaela</creator><creator>Marksteiner, Josef</creator><creator>Lenhart, Lukas</creator><creator>Klingler, Paul</creator><creator>Steiger, Ruth</creator><creator>Gizewski, Elke R.</creator><creator>Goebel, Georg</creator><creator>Deisenhammer, Eberhard A.</creator><creator>Scherfler, Christoph</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250110</creationdate><title>Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease</title><author>Defrancesco, Michaela ; Marksteiner, Josef ; Lenhart, Lukas ; Klingler, Paul ; Steiger, Ruth ; Gizewski, Elke R. ; Goebel, Georg ; Deisenhammer, Eberhard A. ; Scherfler, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-8ff9d61b6c5d644a51d135010bebe150591b3c5d14cf178b12942f16755687cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Atrophy - pathology</topic><topic>Cognitive assessment</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cortical atrophy</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mild cognitive impairment</topic><topic>Neuropsychological Tests</topic><topic>Retrospective Studies</topic><topic>Structural neuroimaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Defrancesco, Michaela</creatorcontrib><creatorcontrib>Marksteiner, Josef</creatorcontrib><creatorcontrib>Lenhart, Lukas</creatorcontrib><creatorcontrib>Klingler, Paul</creatorcontrib><creatorcontrib>Steiger, Ruth</creatorcontrib><creatorcontrib>Gizewski, Elke R.</creatorcontrib><creatorcontrib>Goebel, Georg</creatorcontrib><creatorcontrib>Deisenhammer, Eberhard A.</creatorcontrib><creatorcontrib>Scherfler, Christoph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in neuro-psychopharmacology & biological psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Defrancesco, Michaela</au><au>Marksteiner, Josef</au><au>Lenhart, Lukas</au><au>Klingler, Paul</au><au>Steiger, Ruth</au><au>Gizewski, Elke R.</au><au>Goebel, Georg</au><au>Deisenhammer, Eberhard A.</au><au>Scherfler, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease</atitle><jtitle>Progress in neuro-psychopharmacology & biological psychiatry</jtitle><addtitle>Prog Neuropsychopharmacol Biol Psychiatry</addtitle><date>2025-01-10</date><risdate>2025</risdate><volume>136</volume><spage>111157</spage><pages>111157-</pages><artnum>111157</artnum><issn>0278-5846</issn><issn>1878-4216</issn><eissn>1878-4216</eissn><abstract>Mild cognitive impairment (MCI) confers a high annual risk of 10–15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzheimer's disease.
The aim of the present study was to combine automated ROI MRI morphometry of hippocampal subfield volumes and cortical thickness estimates using FreeSurfer 6.0 with cognitive measures to predict disease progression and time to conversion from MCI to AD dementia.
Baseline (Neuropsychology, MRI) and clinical follow-up data from 62 MCI patients were analysed retrospectively. Individual cortical thickness and volumetric measures were obtained from T1-weighted MRI. Linear discriminant analysis (LDA) of both, cognitive measures and MRI measures (hippocampal subfields, temporal and parietal lobe volumes), were performed to differentiate MCI converters from stable MCI patients.
Out of 62 MCI patients 21 (34 %) converted to AD dementia within a mean follow-up time of 74.7 ± 36.8 months (mean ± SD, range 12 to 130 months). LDA identified temporal lobe atrophy and hippocampal subfield volumes in combination with cognitive measures of verbal memory, verbal fluency and executive functions to correctly classify 71.4.% of MCI subjects converting to AD dementia and 92.7 % with stable MCI. Lower baseline GM volume of the subiculum and the superior temporal gyrus was associated with faster disease progression of MCI converters.
Combining cognitive assessment with automated ROI MRI morphometry is superior to using a single test in order to distinguish MCI due to AD from non converting MCI patients.
•A combination of neuropsychological and MRI parameter can predict Alzheimer's dementia.•Fast disease progression of early Alzheimer dementia is associated with lower gray matter volume of temporal regions.•Long-term follow-up studies are essential for classifying the aetiology of Mild Cognitive Impairment.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>39349216</pmid><doi>10.1016/j.pnpbp.2024.111157</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-5846 |
ispartof | Progress in neuro-psychopharmacology & biological psychiatry, 2025-01, Vol.136, p.111157, Article 111157 |
issn | 0278-5846 1878-4216 1878-4216 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111635300 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Atrophy - pathology Cognitive assessment Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - pathology Cortical atrophy Disease Progression Female Follow-Up Studies Hippocampus - diagnostic imaging Hippocampus - pathology Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Middle Aged Mild cognitive impairment Neuropsychological Tests Retrospective Studies Structural neuroimaging |
title | Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20cognitive%20assessment%20and%20automated%20MRI%20volumetry%20improves%20the%20diagnostic%20accuracy%20of%20detecting%20MCI%20due%20to%20Alzheimer's%20disease&rft.jtitle=Progress%20in%20neuro-psychopharmacology%20&%20biological%20psychiatry&rft.au=Defrancesco,%20Michaela&rft.date=2025-01-10&rft.volume=136&rft.spage=111157&rft.pages=111157-&rft.artnum=111157&rft.issn=0278-5846&rft.eissn=1878-4216&rft_id=info:doi/10.1016/j.pnpbp.2024.111157&rft_dat=%3Cproquest_cross%3E3111635300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111635300&rft_id=info:pmid/39349216&rft_els_id=S0278584624002252&rfr_iscdi=true |