Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency
Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-11, p.e202416921 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e202416921 |
container_title | Angewandte Chemie International Edition |
container_volume | |
creator | Chen, Min Yang, Tian Lei, Qiuxia Gan, Xue Mao, Shun Zhao, Hongying |
description | Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species (ROS) based on structure adaption of target contaminants. To construct a model TRS, we first realized highly selective generation of three classical ROS (
O
, HO⋅ and SO
⋅
) by peroxymonosulfate activation in an electrochemical Fenton-like system, where three replaceable Fe-centered cathodes were rationally designed as electronic mediator. The
O
+SO
⋅
-TRS exhibited nearly 100 % mineralization of sulfamethoxazole (SMX), whereas only 34.2 %, 56.2 % and 60.8 % for each of the single
O
/HO⋅/SO
⋅
-AOP systems. Mechanism exploration of SMX degradation in TRS evidenced that the initial reaction with
O
selectively destructed the sulfonamide bridge of SMX to form p-aminobenzenesulfonic acid, which will be vulnerable to sequent SO
⋅
attack to facilitate mineralization. Successful extendibility of
O
+SO
⋅
-TRS to other sulfonamide antibiotics and
O
+HO⋅-TRS to phenolic and arylcarboxylic compounds, as well as the demonstration of
O
+SO
⋅
-TRS in treatment of three actual pharmaceutical wastewaters strongly support that TRS is a powerful and sustainable strategy to enhance the mineralization of emerging contaminants in water. |
doi_str_mv | 10.1002/anie.202416921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111206930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111206930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-39f1da40f2d66502bc35d0dcfaf4a2b8fc0d9a478f779f853c7f7eb21aff074d3</originalsourceid><addsrcrecordid>eNo9kDtP7DAQRi0E4t1SIpc02etHEiclrHhciSskHqKMZu0xMiT2YjvF0vHPyS5cqhnNnO8rDiEnnM04Y-IPeIczwUTJ61bwLbLPK8ELqZTcnvZSykI1Fd8jBym9TnzTsHqX7MlWlqrl5T75nAefchx1dv6FPoI3ONAr9Dn4ondvSO8Rpl_w9GGVMg6JXkBCQ9eHTWyMSM8NLDdMDvQihJTpM2SMdOrOMDgPPtN_zmOE3n3Ahry01mmHXq-OyI6FPuHxzzwkT1eXj_Ob4vbu-u_8_LbQvGG5kK3lBkpmhanriomFlpVhRluwJYhFYzUzLZSqsUq1tqmkVlbhQnCwlqnSyENy9t27jOF9xJS7wSWNfQ8ew5g6yTkXrG4lm9DZN6pjSCmi7ZbRDRBXHWfdWnu31t79ap8Cpz_d42JA84v_9yy_AF_zgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111206930</pqid></control><display><type>article</type><title>Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency</title><source>Wiley Online Library All Journals</source><creator>Chen, Min ; Yang, Tian ; Lei, Qiuxia ; Gan, Xue ; Mao, Shun ; Zhao, Hongying</creator><creatorcontrib>Chen, Min ; Yang, Tian ; Lei, Qiuxia ; Gan, Xue ; Mao, Shun ; Zhao, Hongying</creatorcontrib><description>Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species (ROS) based on structure adaption of target contaminants. To construct a model TRS, we first realized highly selective generation of three classical ROS (
O
, HO⋅ and SO
⋅
) by peroxymonosulfate activation in an electrochemical Fenton-like system, where three replaceable Fe-centered cathodes were rationally designed as electronic mediator. The
O
+SO
⋅
-TRS exhibited nearly 100 % mineralization of sulfamethoxazole (SMX), whereas only 34.2 %, 56.2 % and 60.8 % for each of the single
O
/HO⋅/SO
⋅
-AOP systems. Mechanism exploration of SMX degradation in TRS evidenced that the initial reaction with
O
selectively destructed the sulfonamide bridge of SMX to form p-aminobenzenesulfonic acid, which will be vulnerable to sequent SO
⋅
attack to facilitate mineralization. Successful extendibility of
O
+SO
⋅
-TRS to other sulfonamide antibiotics and
O
+HO⋅-TRS to phenolic and arylcarboxylic compounds, as well as the demonstration of
O
+SO
⋅
-TRS in treatment of three actual pharmaceutical wastewaters strongly support that TRS is a powerful and sustainable strategy to enhance the mineralization of emerging contaminants in water.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202416921</identifier><identifier>PMID: 39347914</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2024-11, p.e202416921</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-39f1da40f2d66502bc35d0dcfaf4a2b8fc0d9a478f779f853c7f7eb21aff074d3</cites><orcidid>0000-0002-2313-8569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39347914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><creatorcontrib>Lei, Qiuxia</creatorcontrib><creatorcontrib>Gan, Xue</creatorcontrib><creatorcontrib>Mao, Shun</creatorcontrib><creatorcontrib>Zhao, Hongying</creatorcontrib><title>Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species (ROS) based on structure adaption of target contaminants. To construct a model TRS, we first realized highly selective generation of three classical ROS (
O
, HO⋅ and SO
⋅
) by peroxymonosulfate activation in an electrochemical Fenton-like system, where three replaceable Fe-centered cathodes were rationally designed as electronic mediator. The
O
+SO
⋅
-TRS exhibited nearly 100 % mineralization of sulfamethoxazole (SMX), whereas only 34.2 %, 56.2 % and 60.8 % for each of the single
O
/HO⋅/SO
⋅
-AOP systems. Mechanism exploration of SMX degradation in TRS evidenced that the initial reaction with
O
selectively destructed the sulfonamide bridge of SMX to form p-aminobenzenesulfonic acid, which will be vulnerable to sequent SO
⋅
attack to facilitate mineralization. Successful extendibility of
O
+SO
⋅
-TRS to other sulfonamide antibiotics and
O
+HO⋅-TRS to phenolic and arylcarboxylic compounds, as well as the demonstration of
O
+SO
⋅
-TRS in treatment of three actual pharmaceutical wastewaters strongly support that TRS is a powerful and sustainable strategy to enhance the mineralization of emerging contaminants in water.</description><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDtP7DAQRi0E4t1SIpc02etHEiclrHhciSskHqKMZu0xMiT2YjvF0vHPyS5cqhnNnO8rDiEnnM04Y-IPeIczwUTJ61bwLbLPK8ELqZTcnvZSykI1Fd8jBym9TnzTsHqX7MlWlqrl5T75nAefchx1dv6FPoI3ONAr9Dn4ondvSO8Rpl_w9GGVMg6JXkBCQ9eHTWyMSM8NLDdMDvQihJTpM2SMdOrOMDgPPtN_zmOE3n3Ahry01mmHXq-OyI6FPuHxzzwkT1eXj_Ob4vbu-u_8_LbQvGG5kK3lBkpmhanriomFlpVhRluwJYhFYzUzLZSqsUq1tqmkVlbhQnCwlqnSyENy9t27jOF9xJS7wSWNfQ8ew5g6yTkXrG4lm9DZN6pjSCmi7ZbRDRBXHWfdWnu31t79ap8Cpz_d42JA84v_9yy_AF_zgUw</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Chen, Min</creator><creator>Yang, Tian</creator><creator>Lei, Qiuxia</creator><creator>Gan, Xue</creator><creator>Mao, Shun</creator><creator>Zhao, Hongying</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2313-8569</orcidid></search><sort><creationdate>20241106</creationdate><title>Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency</title><author>Chen, Min ; Yang, Tian ; Lei, Qiuxia ; Gan, Xue ; Mao, Shun ; Zhao, Hongying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-39f1da40f2d66502bc35d0dcfaf4a2b8fc0d9a478f779f853c7f7eb21aff074d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><creatorcontrib>Lei, Qiuxia</creatorcontrib><creatorcontrib>Gan, Xue</creatorcontrib><creatorcontrib>Mao, Shun</creatorcontrib><creatorcontrib>Zhao, Hongying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Min</au><au>Yang, Tian</au><au>Lei, Qiuxia</au><au>Gan, Xue</au><au>Mao, Shun</au><au>Zhao, Hongying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-11-06</date><risdate>2024</risdate><spage>e202416921</spage><pages>e202416921-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species (ROS) based on structure adaption of target contaminants. To construct a model TRS, we first realized highly selective generation of three classical ROS (
O
, HO⋅ and SO
⋅
) by peroxymonosulfate activation in an electrochemical Fenton-like system, where three replaceable Fe-centered cathodes were rationally designed as electronic mediator. The
O
+SO
⋅
-TRS exhibited nearly 100 % mineralization of sulfamethoxazole (SMX), whereas only 34.2 %, 56.2 % and 60.8 % for each of the single
O
/HO⋅/SO
⋅
-AOP systems. Mechanism exploration of SMX degradation in TRS evidenced that the initial reaction with
O
selectively destructed the sulfonamide bridge of SMX to form p-aminobenzenesulfonic acid, which will be vulnerable to sequent SO
⋅
attack to facilitate mineralization. Successful extendibility of
O
+SO
⋅
-TRS to other sulfonamide antibiotics and
O
+HO⋅-TRS to phenolic and arylcarboxylic compounds, as well as the demonstration of
O
+SO
⋅
-TRS in treatment of three actual pharmaceutical wastewaters strongly support that TRS is a powerful and sustainable strategy to enhance the mineralization of emerging contaminants in water.</abstract><cop>Germany</cop><pmid>39347914</pmid><doi>10.1002/anie.202416921</doi><orcidid>https://orcid.org/0000-0002-2313-8569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-11, p.e202416921 |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111206930 |
source | Wiley Online Library All Journals |
title | Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Tandem%20Fenton-like%20Reaction%20Systems%20Based%20on%20Structure%20Adaption%20to%20Boost%20Water%20Contaminant%20Mineralization%20Efficiency&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Min&rft.date=2024-11-06&rft.spage=e202416921&rft.pages=e202416921-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202416921&rft_dat=%3Cproquest_cross%3E3111206930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111206930&rft_id=info:pmid/39347914&rfr_iscdi=true |