Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence

Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment proto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2024-12, Vol.37 (6), p.1325-1378
Hauptverfasser: Famurewa, Ademola C., George, Mina Y., Ukwubile, Cletus A., Kumar, Sachindra, Kamal, Mehta V., Belle, Vijetha S., Othman, Eman M., Pai, Sreedhara Ranganath K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 6
container_start_page 1325
container_title Biometals
container_volume 37
creator Famurewa, Ademola C.
George, Mina Y.
Ukwubile, Cletus A.
Kumar, Sachindra
Kamal, Mehta V.
Belle, Vijetha S.
Othman, Eman M.
Pai, Sreedhara Ranganath K.
description Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
doi_str_mv 10.1007/s10534-024-00637-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111206605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140758029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1dd75f1bde20bbdaf275a2be7a4908735f01dcdf2027b0dd3fd1b99420e12ba33</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EosvCC3BAlrhwCR3bSZxwQxX_pEq9lHM0sSe7rhIn2E7L3ngAjjwhT4LpFpA49GBZnvnNNzP-GHsu4LUA0KdRQKXKAmQ-UCtd6AdsIyoti0Zr9ZBtoK3rApqyPGFPYrwCgFZD_ZidqFaVuimbDft-GdAQp5Em8ily9JZPlHDkHv28YEjOjBTf5KDZo3cxvzkuS5jR7CnyNPPJJbfD5PyO59A0pz0FXA6F83Y1ZDPy1RmXDj-__UAe6NrRDZ8HPrqUubSG3P3aWfKGnrJHA46Rnt3dW_b5_bvLs4_F-cWHT2dvzwsjqzoVwlpdDaK3JKHvLQ5SVyh70li20GhVDSCssYMEqXuwVg1W9G1bSiAhe1Rqy14ddfMaX1aKqZtcNDSO6GleY6eEEBLqOn_vlr38D72a1-DzdJkqQVcNyDZT8kiZMMcYaOiW4CYMh05A99ur7uhVl73qbr3qdC56cSe99hPZvyV_zMmAOgIxp_yOwr_e98j-AvB6o9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140758029</pqid></control><display><type>article</type><title>Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Famurewa, Ademola C. ; George, Mina Y. ; Ukwubile, Cletus A. ; Kumar, Sachindra ; Kamal, Mehta V. ; Belle, Vijetha S. ; Othman, Eman M. ; Pai, Sreedhara Ranganath K.</creator><creatorcontrib>Famurewa, Ademola C. ; George, Mina Y. ; Ukwubile, Cletus A. ; Kumar, Sachindra ; Kamal, Mehta V. ; Belle, Vijetha S. ; Othman, Eman M. ; Pai, Sreedhara Ranganath K.</creatorcontrib><description>Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.</description><identifier>ISSN: 0966-0844</identifier><identifier>ISSN: 1572-8773</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-024-00637-7</identifier><identifier>PMID: 39347848</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Apoptosis ; Autophagy ; Bcl-2 protein ; Biochemistry ; Biomedical and Life Sciences ; Boron ; Cancer therapies ; Cell Biology ; Chemotherapy ; Effectiveness ; Endoplasmic reticulum ; Forkhead protein ; Humans ; Life Sciences ; Literature reviews ; Manganese ; MAP kinase ; Medicine/Public Health ; Metal Nanoparticles - chemistry ; Microbiology ; Molecular modelling ; Molybdenum ; Nanoparticles ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; NF-κB protein ; Oxidative stress ; Oxidative Stress - drug effects ; Patients ; Pharmacology ; Pharmacology/Toxicology ; Plant Physiology ; Quality of life ; Review ; Selenium ; Signal transduction ; TLR4 protein ; Toxicity ; Trace elements ; Trace Elements - pharmacology ; Wnt protein ; β-Catenin</subject><ispartof>Biometals, 2024-12, Vol.37 (6), p.1325-1378</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-1dd75f1bde20bbdaf275a2be7a4908735f01dcdf2027b0dd3fd1b99420e12ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-024-00637-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-024-00637-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39347848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Famurewa, Ademola C.</creatorcontrib><creatorcontrib>George, Mina Y.</creatorcontrib><creatorcontrib>Ukwubile, Cletus A.</creatorcontrib><creatorcontrib>Kumar, Sachindra</creatorcontrib><creatorcontrib>Kamal, Mehta V.</creatorcontrib><creatorcontrib>Belle, Vijetha S.</creatorcontrib><creatorcontrib>Othman, Eman M.</creatorcontrib><creatorcontrib>Pai, Sreedhara Ranganath K.</creatorcontrib><title>Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Bcl-2 protein</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Boron</subject><subject>Cancer therapies</subject><subject>Cell Biology</subject><subject>Chemotherapy</subject><subject>Effectiveness</subject><subject>Endoplasmic reticulum</subject><subject>Forkhead protein</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Literature reviews</subject><subject>Manganese</subject><subject>MAP kinase</subject><subject>Medicine/Public Health</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microbiology</subject><subject>Molecular modelling</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>NF-κB protein</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Patients</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Quality of life</subject><subject>Review</subject><subject>Selenium</subject><subject>Signal transduction</subject><subject>TLR4 protein</subject><subject>Toxicity</subject><subject>Trace elements</subject><subject>Trace Elements - pharmacology</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>0966-0844</issn><issn>1572-8773</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0EosvCC3BAlrhwCR3bSZxwQxX_pEq9lHM0sSe7rhIn2E7L3ngAjjwhT4LpFpA49GBZnvnNNzP-GHsu4LUA0KdRQKXKAmQ-UCtd6AdsIyoti0Zr9ZBtoK3rApqyPGFPYrwCgFZD_ZidqFaVuimbDft-GdAQp5Em8ily9JZPlHDkHv28YEjOjBTf5KDZo3cxvzkuS5jR7CnyNPPJJbfD5PyO59A0pz0FXA6F83Y1ZDPy1RmXDj-__UAe6NrRDZ8HPrqUubSG3P3aWfKGnrJHA46Rnt3dW_b5_bvLs4_F-cWHT2dvzwsjqzoVwlpdDaK3JKHvLQ5SVyh70li20GhVDSCssYMEqXuwVg1W9G1bSiAhe1Rqy14ddfMaX1aKqZtcNDSO6GleY6eEEBLqOn_vlr38D72a1-DzdJkqQVcNyDZT8kiZMMcYaOiW4CYMh05A99ur7uhVl73qbr3qdC56cSe99hPZvyV_zMmAOgIxp_yOwr_e98j-AvB6o9A</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Famurewa, Ademola C.</creator><creator>George, Mina Y.</creator><creator>Ukwubile, Cletus A.</creator><creator>Kumar, Sachindra</creator><creator>Kamal, Mehta V.</creator><creator>Belle, Vijetha S.</creator><creator>Othman, Eman M.</creator><creator>Pai, Sreedhara Ranganath K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20241201</creationdate><title>Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence</title><author>Famurewa, Ademola C. ; George, Mina Y. ; Ukwubile, Cletus A. ; Kumar, Sachindra ; Kamal, Mehta V. ; Belle, Vijetha S. ; Othman, Eman M. ; Pai, Sreedhara Ranganath K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1dd75f1bde20bbdaf275a2be7a4908735f01dcdf2027b0dd3fd1b99420e12ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Bcl-2 protein</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Boron</topic><topic>Cancer therapies</topic><topic>Cell Biology</topic><topic>Chemotherapy</topic><topic>Effectiveness</topic><topic>Endoplasmic reticulum</topic><topic>Forkhead protein</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Literature reviews</topic><topic>Manganese</topic><topic>MAP kinase</topic><topic>Medicine/Public Health</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microbiology</topic><topic>Molecular modelling</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>NF-κB protein</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Patients</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Quality of life</topic><topic>Review</topic><topic>Selenium</topic><topic>Signal transduction</topic><topic>TLR4 protein</topic><topic>Toxicity</topic><topic>Trace elements</topic><topic>Trace Elements - pharmacology</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Famurewa, Ademola C.</creatorcontrib><creatorcontrib>George, Mina Y.</creatorcontrib><creatorcontrib>Ukwubile, Cletus A.</creatorcontrib><creatorcontrib>Kumar, Sachindra</creatorcontrib><creatorcontrib>Kamal, Mehta V.</creatorcontrib><creatorcontrib>Belle, Vijetha S.</creatorcontrib><creatorcontrib>Othman, Eman M.</creatorcontrib><creatorcontrib>Pai, Sreedhara Ranganath K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Famurewa, Ademola C.</au><au>George, Mina Y.</au><au>Ukwubile, Cletus A.</au><au>Kumar, Sachindra</au><au>Kamal, Mehta V.</au><au>Belle, Vijetha S.</au><au>Othman, Eman M.</au><au>Pai, Sreedhara Ranganath K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>37</volume><issue>6</issue><spage>1325</spage><epage>1378</epage><pages>1325-1378</pages><issn>0966-0844</issn><issn>1572-8773</issn><eissn>1572-8773</eissn><abstract>Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39347848</pmid><doi>10.1007/s10534-024-00637-7</doi><tpages>54</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0966-0844
ispartof Biometals, 2024-12, Vol.37 (6), p.1325-1378
issn 0966-0844
1572-8773
1572-8773
language eng
recordid cdi_proquest_miscellaneous_3111206605
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Apoptosis
Autophagy
Bcl-2 protein
Biochemistry
Biomedical and Life Sciences
Boron
Cancer therapies
Cell Biology
Chemotherapy
Effectiveness
Endoplasmic reticulum
Forkhead protein
Humans
Life Sciences
Literature reviews
Manganese
MAP kinase
Medicine/Public Health
Metal Nanoparticles - chemistry
Microbiology
Molecular modelling
Molybdenum
Nanoparticles
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
NF-κB protein
Oxidative stress
Oxidative Stress - drug effects
Patients
Pharmacology
Pharmacology/Toxicology
Plant Physiology
Quality of life
Review
Selenium
Signal transduction
TLR4 protein
Toxicity
Trace elements
Trace Elements - pharmacology
Wnt protein
β-Catenin
title Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity—a review of literature evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20elements%20and%20metal%20nanoparticles:%20mechanistic%20approaches%20to%20mitigating%20chemotherapy-induced%20toxicity%E2%80%94a%20review%20of%20literature%20evidence&rft.jtitle=Biometals&rft.au=Famurewa,%20Ademola%20C.&rft.date=2024-12-01&rft.volume=37&rft.issue=6&rft.spage=1325&rft.epage=1378&rft.pages=1325-1378&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-024-00637-7&rft_dat=%3Cproquest_cross%3E3140758029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140758029&rft_id=info:pmid/39347848&rfr_iscdi=true