Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution

Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-10, Vol.16 (40), p.54215-54223
Hauptverfasser: Xuan, Yan, Uchiyama, Takahiro, Ura, Hiroki, Hagiwara, Shuji, Kato, Hiroyuki, Sarkar, Sudipta Kumar, Takei, Kuniharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54223
container_issue 40
container_start_page 54215
container_title ACS applied materials & interfaces
container_volume 16
creator Xuan, Yan
Uchiyama, Takahiro
Ura, Hiroki
Hagiwara, Shuji
Kato, Hiroyuki
Sarkar, Sudipta Kumar
Takei, Kuniharu
description Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.
doi_str_mv 10.1021/acsami.4c11810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111203777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111203777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRbK1uXcosRUidVx6zLNVqwUdBXYdJcqdMSTJ1ZiL6742mdufq3gvn--AehM4pmVLC6LUqvWrMVJSUZpQcoDGVQkQZi9nhfhdihE683xCScEbiYzTikgtBYjFG5aKGT1PUgJdtgLVTASo8Mw6vHHjfOcAv0HrrPNbW4UfbmmCdadd4Zb0J5gOwaiv8BGv1e-xTN8YHZ4ouGNueoiOtag9nuzlBb4vb1_l99PB8t5zPHiLFaBwiplOpgIGUpEoyxamKCVM0K-NMlUpqRkmheZGkTMdZWaki4VkhZKaJhERLxifocujdOvvegQ95Y3wJda1asJ3POaWUEZ6maY9OB7R01nsHOt860yj3lVOS_4jNB7H5TmwfuNh1d0UD1R7_M9kDVwPQB_ON7Vzbv_pf2zdqjoRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111203777</pqid></control><display><type>article</type><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><source>ACS Publications</source><creator>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</creator><creatorcontrib>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</creatorcontrib><description>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11810</identifier><identifier>PMID: 39344054</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-10, Vol.16 (40), p.54215-54223</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</cites><orcidid>0000-0001-9166-3747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c11810$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c11810$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39344054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuan, Yan</creatorcontrib><creatorcontrib>Uchiyama, Takahiro</creatorcontrib><creatorcontrib>Ura, Hiroki</creatorcontrib><creatorcontrib>Hagiwara, Shuji</creatorcontrib><creatorcontrib>Kato, Hiroyuki</creatorcontrib><creatorcontrib>Sarkar, Sudipta Kumar</creatorcontrib><creatorcontrib>Takei, Kuniharu</creatorcontrib><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AURgdRbK1uXcosRUidVx6zLNVqwUdBXYdJcqdMSTJ1ZiL6742mdufq3gvn--AehM4pmVLC6LUqvWrMVJSUZpQcoDGVQkQZi9nhfhdihE683xCScEbiYzTikgtBYjFG5aKGT1PUgJdtgLVTASo8Mw6vHHjfOcAv0HrrPNbW4UfbmmCdadd4Zb0J5gOwaiv8BGv1e-xTN8YHZ4ouGNueoiOtag9nuzlBb4vb1_l99PB8t5zPHiLFaBwiplOpgIGUpEoyxamKCVM0K-NMlUpqRkmheZGkTMdZWaki4VkhZKaJhERLxifocujdOvvegQ95Y3wJda1asJ3POaWUEZ6maY9OB7R01nsHOt860yj3lVOS_4jNB7H5TmwfuNh1d0UD1R7_M9kDVwPQB_ON7Vzbv_pf2zdqjoRO</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Xuan, Yan</creator><creator>Uchiyama, Takahiro</creator><creator>Ura, Hiroki</creator><creator>Hagiwara, Shuji</creator><creator>Kato, Hiroyuki</creator><creator>Sarkar, Sudipta Kumar</creator><creator>Takei, Kuniharu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9166-3747</orcidid></search><sort><creationdate>20241009</creationdate><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><author>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Yan</creatorcontrib><creatorcontrib>Uchiyama, Takahiro</creatorcontrib><creatorcontrib>Ura, Hiroki</creatorcontrib><creatorcontrib>Hagiwara, Shuji</creatorcontrib><creatorcontrib>Kato, Hiroyuki</creatorcontrib><creatorcontrib>Sarkar, Sudipta Kumar</creatorcontrib><creatorcontrib>Takei, Kuniharu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Yan</au><au>Uchiyama, Takahiro</au><au>Ura, Hiroki</au><au>Hagiwara, Shuji</au><au>Kato, Hiroyuki</au><au>Sarkar, Sudipta Kumar</au><au>Takei, Kuniharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>16</volume><issue>40</issue><spage>54215</spage><epage>54223</epage><pages>54215-54223</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39344054</pmid><doi>10.1021/acsami.4c11810</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9166-3747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-10, Vol.16 (40), p.54215-54223
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3111203777
source ACS Publications
subjects Functional Inorganic Materials and Devices
title Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Integrated%20Air%20Pressure%20Sensors%20for%20Monitoring%20Positive%20and%20Negative%20Pressure%20Distribution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xuan,%20Yan&rft.date=2024-10-09&rft.volume=16&rft.issue=40&rft.spage=54215&rft.epage=54223&rft.pages=54215-54223&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11810&rft_dat=%3Cproquest_cross%3E3111203777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111203777&rft_id=info:pmid/39344054&rfr_iscdi=true