Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution
Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-10, Vol.16 (40), p.54215-54223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54223 |
---|---|
container_issue | 40 |
container_start_page | 54215 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Xuan, Yan Uchiyama, Takahiro Ura, Hiroki Hagiwara, Shuji Kato, Hiroyuki Sarkar, Sudipta Kumar Takei, Kuniharu |
description | Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out. |
doi_str_mv | 10.1021/acsami.4c11810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111203777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111203777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRbK1uXcosRUidVx6zLNVqwUdBXYdJcqdMSTJ1ZiL6742mdufq3gvn--AehM4pmVLC6LUqvWrMVJSUZpQcoDGVQkQZi9nhfhdihE683xCScEbiYzTikgtBYjFG5aKGT1PUgJdtgLVTASo8Mw6vHHjfOcAv0HrrPNbW4UfbmmCdadd4Zb0J5gOwaiv8BGv1e-xTN8YHZ4ouGNueoiOtag9nuzlBb4vb1_l99PB8t5zPHiLFaBwiplOpgIGUpEoyxamKCVM0K-NMlUpqRkmheZGkTMdZWaki4VkhZKaJhERLxifocujdOvvegQ95Y3wJda1asJ3POaWUEZ6maY9OB7R01nsHOt860yj3lVOS_4jNB7H5TmwfuNh1d0UD1R7_M9kDVwPQB_ON7Vzbv_pf2zdqjoRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111203777</pqid></control><display><type>article</type><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><source>ACS Publications</source><creator>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</creator><creatorcontrib>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</creatorcontrib><description>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c11810</identifier><identifier>PMID: 39344054</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2024-10, Vol.16 (40), p.54215-54223</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</cites><orcidid>0000-0001-9166-3747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c11810$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c11810$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39344054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuan, Yan</creatorcontrib><creatorcontrib>Uchiyama, Takahiro</creatorcontrib><creatorcontrib>Ura, Hiroki</creatorcontrib><creatorcontrib>Hagiwara, Shuji</creatorcontrib><creatorcontrib>Kato, Hiroyuki</creatorcontrib><creatorcontrib>Sarkar, Sudipta Kumar</creatorcontrib><creatorcontrib>Takei, Kuniharu</creatorcontrib><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AURgdRbK1uXcosRUidVx6zLNVqwUdBXYdJcqdMSTJ1ZiL6742mdufq3gvn--AehM4pmVLC6LUqvWrMVJSUZpQcoDGVQkQZi9nhfhdihE683xCScEbiYzTikgtBYjFG5aKGT1PUgJdtgLVTASo8Mw6vHHjfOcAv0HrrPNbW4UfbmmCdadd4Zb0J5gOwaiv8BGv1e-xTN8YHZ4ouGNueoiOtag9nuzlBb4vb1_l99PB8t5zPHiLFaBwiplOpgIGUpEoyxamKCVM0K-NMlUpqRkmheZGkTMdZWaki4VkhZKaJhERLxifocujdOvvegQ95Y3wJda1asJ3POaWUEZ6maY9OB7R01nsHOt860yj3lVOS_4jNB7H5TmwfuNh1d0UD1R7_M9kDVwPQB_ON7Vzbv_pf2zdqjoRO</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Xuan, Yan</creator><creator>Uchiyama, Takahiro</creator><creator>Ura, Hiroki</creator><creator>Hagiwara, Shuji</creator><creator>Kato, Hiroyuki</creator><creator>Sarkar, Sudipta Kumar</creator><creator>Takei, Kuniharu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9166-3747</orcidid></search><sort><creationdate>20241009</creationdate><title>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</title><author>Xuan, Yan ; Uchiyama, Takahiro ; Ura, Hiroki ; Hagiwara, Shuji ; Kato, Hiroyuki ; Sarkar, Sudipta Kumar ; Takei, Kuniharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-2f79ae2e990d68a31a502a18c58aca9f210bf3b672f58cdab638b498f09e6f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Yan</creatorcontrib><creatorcontrib>Uchiyama, Takahiro</creatorcontrib><creatorcontrib>Ura, Hiroki</creatorcontrib><creatorcontrib>Hagiwara, Shuji</creatorcontrib><creatorcontrib>Kato, Hiroyuki</creatorcontrib><creatorcontrib>Sarkar, Sudipta Kumar</creatorcontrib><creatorcontrib>Takei, Kuniharu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Yan</au><au>Uchiyama, Takahiro</au><au>Ura, Hiroki</au><au>Hagiwara, Shuji</au><au>Kato, Hiroyuki</au><au>Sarkar, Sudipta Kumar</au><au>Takei, Kuniharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>16</volume><issue>40</issue><spage>54215</spage><epage>54223</epage><pages>54215-54223</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Barometric pressure monitoring typically depends on conventional rigid microelectromechanical systems (MEMS) for single-point measurements. However, applications such as fluid dynamics require mapping barometric pressure distribution to study phenomena such as pressure variations on an aircraft wing during flight. In this study, we developed a mechanically flexible, multichannel air pressure sensor sheet using laser-induced graphene (LIG). This air pressure sensor sheet is designed to be mechanically flexible, allowing it to conform to nonplanar objects. First, the crystallinity change of LIG is studied by monitoring the bottom and top surfaces, revealing the presence of multilayered graphene and amorphous-like carbon in the formation of LIG. This explains the crystallinity change before and after the transfer process. Using LIG with optimal structures, negative and positive pressure detection is achieved, enabling its use as an air pressure sensor. Finally, as a proof-of-concept for the multichannel air pressure sensor sheet, the pressure distribution on the surface of an aircraft wing model is successfully mapped out.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39344054</pmid><doi>10.1021/acsami.4c11810</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9166-3747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-10, Vol.16 (40), p.54215-54223 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111203777 |
source | ACS Publications |
subjects | Functional Inorganic Materials and Devices |
title | Flexible Integrated Air Pressure Sensors for Monitoring Positive and Negative Pressure Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Integrated%20Air%20Pressure%20Sensors%20for%20Monitoring%20Positive%20and%20Negative%20Pressure%20Distribution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xuan,%20Yan&rft.date=2024-10-09&rft.volume=16&rft.issue=40&rft.spage=54215&rft.epage=54223&rft.pages=54215-54223&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c11810&rft_dat=%3Cproquest_cross%3E3111203777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111203777&rft_id=info:pmid/39344054&rfr_iscdi=true |