In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans,...
Gespeichert in:
Veröffentlicht in: | Toxicology (Amsterdam) 2024-12, Vol.509, p.153961, Article 153961 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 153961 |
container_title | Toxicology (Amsterdam) |
container_volume | 509 |
creator | Louisse, Jochem Pedroni, Lorenzo van den Heuvel, Jeroen J.M.W. Rijkers, Deborah Leenders, Liz Noorlander, Annelies Punt, Ans Russel, Frans G.M. Koenderink, Jan B. Dellafiora, Luca |
description | Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulations were performed for PFHpA and PFHxS, for which a relatively short and long half-lives in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans. |
doi_str_mv | 10.1016/j.tox.2024.153961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111202760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300483X24002427</els_id><sourcerecordid>3111202760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-34a0c61d3401e1bde8f01c8440dd4cb743fb59431956ea4d23c6bcd4d5d5aaa43</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EoqHwAFyQj0ViU8_au9kVp6oqUKlSL63EzfLas8TBsYPtrRrerm-Gk5QcOHAaa_TNPxp_hLwHNgcG7flqnsPjvGa1mEPD-xZekBl0i77i0DUvyYxxxirR8e8n5E1KK8ZYzUX7mpzwngsOTTsjT9eePtgcA1XeUOtpss7qQPVSRaUzRvtbZRs8DSPNS6Q5Kp82IeZdI6HDwhi6wTi6KcSg3M-to1rFITxuSxBV2pq0z_6HSZMbgz8Sw5Yup7Uqe-IPtW_73dbjOowU6NntxR18_ERLqfeZ5cHfklejcgnfPddTcv_l6u7yW3Vz-_X68uKm0jVvcsWFYroFwwUDhMFgNzLQnRDMGKGHheDj0PTlV_qmRSVMzXU7aCNMYxqllOCn5OyQu4nh14Qpy7VNGp1THsOUJAeAomLRsoLCAdUxpBRxlJto1ypuJTC5MydXspiTO3PyYK7MfHiOn4Y1muPEX1UF-HwAsBz5YDHKpC16jcbGYkGaYP8T_we9day3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111202760</pqid></control><display><type>article</type><title>In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Louisse, Jochem ; Pedroni, Lorenzo ; van den Heuvel, Jeroen J.M.W. ; Rijkers, Deborah ; Leenders, Liz ; Noorlander, Annelies ; Punt, Ans ; Russel, Frans G.M. ; Koenderink, Jan B. ; Dellafiora, Luca</creator><creatorcontrib>Louisse, Jochem ; Pedroni, Lorenzo ; van den Heuvel, Jeroen J.M.W. ; Rijkers, Deborah ; Leenders, Liz ; Noorlander, Annelies ; Punt, Ans ; Russel, Frans G.M. ; Koenderink, Jan B. ; Dellafiora, Luca</creatorcontrib><description>Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulations were performed for PFHpA and PFHxS, for which a relatively short and long half-lives in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans.</description><identifier>ISSN: 0300-483X</identifier><identifier>ISSN: 1879-3185</identifier><identifier>EISSN: 1879-3185</identifier><identifier>DOI: 10.1016/j.tox.2024.153961</identifier><identifier>PMID: 39343156</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Biological Transport ; Carboxylic Acids - metabolism ; Computer Simulation ; Fluorocarbons - metabolism ; HEK293 Cells ; Humans ; Molecular Docking Simulation ; Molecular modelling ; OAT1 ; OAT2 ; OAT3 ; Organic Anion Transport Protein 1 - genetics ; Organic Anion Transport Protein 1 - metabolism ; Organic Anion Transporters, Sodium-Dependent - genetics ; Organic Anion Transporters, Sodium-Dependent - metabolism ; Organic Anion Transporters, Sodium-Independent - genetics ; Organic Anion Transporters, Sodium-Independent - metabolism ; PFAS ; Sulfonic Acids - metabolism ; Transporter</subject><ispartof>Toxicology (Amsterdam), 2024-12, Vol.509, p.153961, Article 153961</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-34a0c61d3401e1bde8f01c8440dd4cb743fb59431956ea4d23c6bcd4d5d5aaa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tox.2024.153961$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39343156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Louisse, Jochem</creatorcontrib><creatorcontrib>Pedroni, Lorenzo</creatorcontrib><creatorcontrib>van den Heuvel, Jeroen J.M.W.</creatorcontrib><creatorcontrib>Rijkers, Deborah</creatorcontrib><creatorcontrib>Leenders, Liz</creatorcontrib><creatorcontrib>Noorlander, Annelies</creatorcontrib><creatorcontrib>Punt, Ans</creatorcontrib><creatorcontrib>Russel, Frans G.M.</creatorcontrib><creatorcontrib>Koenderink, Jan B.</creatorcontrib><creatorcontrib>Dellafiora, Luca</creatorcontrib><title>In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3</title><title>Toxicology (Amsterdam)</title><addtitle>Toxicology</addtitle><description>Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulations were performed for PFHpA and PFHxS, for which a relatively short and long half-lives in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans.</description><subject>Biological Transport</subject><subject>Carboxylic Acids - metabolism</subject><subject>Computer Simulation</subject><subject>Fluorocarbons - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Molecular Docking Simulation</subject><subject>Molecular modelling</subject><subject>OAT1</subject><subject>OAT2</subject><subject>OAT3</subject><subject>Organic Anion Transport Protein 1 - genetics</subject><subject>Organic Anion Transport Protein 1 - metabolism</subject><subject>Organic Anion Transporters, Sodium-Dependent - genetics</subject><subject>Organic Anion Transporters, Sodium-Dependent - metabolism</subject><subject>Organic Anion Transporters, Sodium-Independent - genetics</subject><subject>Organic Anion Transporters, Sodium-Independent - metabolism</subject><subject>PFAS</subject><subject>Sulfonic Acids - metabolism</subject><subject>Transporter</subject><issn>0300-483X</issn><issn>1879-3185</issn><issn>1879-3185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EoqHwAFyQj0ViU8_au9kVp6oqUKlSL63EzfLas8TBsYPtrRrerm-Gk5QcOHAaa_TNPxp_hLwHNgcG7flqnsPjvGa1mEPD-xZekBl0i77i0DUvyYxxxirR8e8n5E1KK8ZYzUX7mpzwngsOTTsjT9eePtgcA1XeUOtpss7qQPVSRaUzRvtbZRs8DSPNS6Q5Kp82IeZdI6HDwhi6wTi6KcSg3M-to1rFITxuSxBV2pq0z_6HSZMbgz8Sw5Yup7Uqe-IPtW_73dbjOowU6NntxR18_ERLqfeZ5cHfklejcgnfPddTcv_l6u7yW3Vz-_X68uKm0jVvcsWFYroFwwUDhMFgNzLQnRDMGKGHheDj0PTlV_qmRSVMzXU7aCNMYxqllOCn5OyQu4nh14Qpy7VNGp1THsOUJAeAomLRsoLCAdUxpBRxlJto1ypuJTC5MydXspiTO3PyYK7MfHiOn4Y1muPEX1UF-HwAsBz5YDHKpC16jcbGYkGaYP8T_we9day3</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Louisse, Jochem</creator><creator>Pedroni, Lorenzo</creator><creator>van den Heuvel, Jeroen J.M.W.</creator><creator>Rijkers, Deborah</creator><creator>Leenders, Liz</creator><creator>Noorlander, Annelies</creator><creator>Punt, Ans</creator><creator>Russel, Frans G.M.</creator><creator>Koenderink, Jan B.</creator><creator>Dellafiora, Luca</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3</title><author>Louisse, Jochem ; Pedroni, Lorenzo ; van den Heuvel, Jeroen J.M.W. ; Rijkers, Deborah ; Leenders, Liz ; Noorlander, Annelies ; Punt, Ans ; Russel, Frans G.M. ; Koenderink, Jan B. ; Dellafiora, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-34a0c61d3401e1bde8f01c8440dd4cb743fb59431956ea4d23c6bcd4d5d5aaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological Transport</topic><topic>Carboxylic Acids - metabolism</topic><topic>Computer Simulation</topic><topic>Fluorocarbons - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Molecular Docking Simulation</topic><topic>Molecular modelling</topic><topic>OAT1</topic><topic>OAT2</topic><topic>OAT3</topic><topic>Organic Anion Transport Protein 1 - genetics</topic><topic>Organic Anion Transport Protein 1 - metabolism</topic><topic>Organic Anion Transporters, Sodium-Dependent - genetics</topic><topic>Organic Anion Transporters, Sodium-Dependent - metabolism</topic><topic>Organic Anion Transporters, Sodium-Independent - genetics</topic><topic>Organic Anion Transporters, Sodium-Independent - metabolism</topic><topic>PFAS</topic><topic>Sulfonic Acids - metabolism</topic><topic>Transporter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louisse, Jochem</creatorcontrib><creatorcontrib>Pedroni, Lorenzo</creatorcontrib><creatorcontrib>van den Heuvel, Jeroen J.M.W.</creatorcontrib><creatorcontrib>Rijkers, Deborah</creatorcontrib><creatorcontrib>Leenders, Liz</creatorcontrib><creatorcontrib>Noorlander, Annelies</creatorcontrib><creatorcontrib>Punt, Ans</creatorcontrib><creatorcontrib>Russel, Frans G.M.</creatorcontrib><creatorcontrib>Koenderink, Jan B.</creatorcontrib><creatorcontrib>Dellafiora, Luca</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louisse, Jochem</au><au>Pedroni, Lorenzo</au><au>van den Heuvel, Jeroen J.M.W.</au><au>Rijkers, Deborah</au><au>Leenders, Liz</au><au>Noorlander, Annelies</au><au>Punt, Ans</au><au>Russel, Frans G.M.</au><au>Koenderink, Jan B.</au><au>Dellafiora, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3</atitle><jtitle>Toxicology (Amsterdam)</jtitle><addtitle>Toxicology</addtitle><date>2024-12</date><risdate>2024</risdate><volume>509</volume><spage>153961</spage><pages>153961-</pages><artnum>153961</artnum><issn>0300-483X</issn><issn>1879-3185</issn><eissn>1879-3185</eissn><abstract>Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insights into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulations were performed for PFHpA and PFHxS, for which a relatively short and long half-lives in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39343156</pmid><doi>10.1016/j.tox.2024.153961</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-483X |
ispartof | Toxicology (Amsterdam), 2024-12, Vol.509, p.153961, Article 153961 |
issn | 0300-483X 1879-3185 1879-3185 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111202760 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological Transport Carboxylic Acids - metabolism Computer Simulation Fluorocarbons - metabolism HEK293 Cells Humans Molecular Docking Simulation Molecular modelling OAT1 OAT2 OAT3 Organic Anion Transport Protein 1 - genetics Organic Anion Transport Protein 1 - metabolism Organic Anion Transporters, Sodium-Dependent - genetics Organic Anion Transporters, Sodium-Dependent - metabolism Organic Anion Transporters, Sodium-Independent - genetics Organic Anion Transporters, Sodium-Independent - metabolism PFAS Sulfonic Acids - metabolism Transporter |
title | In vitro and in silico characterization of the transport of selected perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids by human organic anion transporter 1 (OAT1), OAT2 and OAT3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20silico%20characterization%20of%20the%20transport%20of%20selected%20perfluoroalkyl%20carboxylic%20acids%20and%20perfluoroalkyl%20sulfonic%20acids%20by%20human%20organic%20anion%20transporter%201%20(OAT1),%20OAT2%20and%20OAT3&rft.jtitle=Toxicology%20(Amsterdam)&rft.au=Louisse,%20Jochem&rft.date=2024-12&rft.volume=509&rft.spage=153961&rft.pages=153961-&rft.artnum=153961&rft.issn=0300-483X&rft.eissn=1879-3185&rft_id=info:doi/10.1016/j.tox.2024.153961&rft_dat=%3Cproquest_cross%3E3111202760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111202760&rft_id=info:pmid/39343156&rft_els_id=S0300483X24002427&rfr_iscdi=true |