CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance
[Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-01, Vol.678 (Pt C), p.1181-1191 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191 |
---|---|
container_issue | Pt C |
container_start_page | 1181 |
container_title | Journal of colloid and interface science |
container_volume | 678 |
creator | Argyri, Smaragda-Maria Almeida, Maëva Cousin, Fabrice Evenäs, Lars Fameau, Anne-Laure Le Coeur, Clémence Bordes, Romain |
description | [Display omitted]
Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner.
A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope.
The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces. |
doi_str_mv | 10.1016/j.jcis.2024.09.123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111202502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197972402188X</els_id><sourcerecordid>3111202502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouH78AU85emmdpMY24EUWv0DwouAtpMlUU7rpmskK--_Nsp6Fgbm8NzCPsQsBtQBxczXWowtUS5DXNehayOaALQRoVbUCmkO2AJCi0q1uj9kJ0QgghFJ6wcblq-Qh-o1Dz9dflpDnZCOFHObIy1hOOA0VZRt9iJ_cp3k9YeaUNz4Up9_yjyrZLSdnc8a0YwrKV_YzYg6OJ6Q52ujwjB0NdiI8_9un7P3h_m35VL28Pj4v714qJ1WXK9X0Qreu9-C9xLbDTqHuOlSITTtoLRvZOhjQgZYo--u2R3Gj-173aKED1Zyyy_3ddZq_N0jZrAI5nCYbcd6QaYQQJZQCWVC5R12aiRIOZp3CyqatEWB2Yc1odmHNLqwBbUrYIt3uJSxP_ARMhlzA8qAPCV02fg7_6b_6ooLi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111202502</pqid></control><display><type>article</type><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><source>Elsevier ScienceDirect Journals</source><creator>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</creator><creatorcontrib>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</creatorcontrib><description>[Display omitted]
Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner.
A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope.
The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.09.123</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Acoustic levitation ; CO2 responsive ; In-situ ; Kinetics ; Self-assembly</subject><ispartof>Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.1181-1191</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002197972402188X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Argyri, Smaragda-Maria</creatorcontrib><creatorcontrib>Almeida, Maëva</creatorcontrib><creatorcontrib>Cousin, Fabrice</creatorcontrib><creatorcontrib>Evenäs, Lars</creatorcontrib><creatorcontrib>Fameau, Anne-Laure</creatorcontrib><creatorcontrib>Le Coeur, Clémence</creatorcontrib><creatorcontrib>Bordes, Romain</creatorcontrib><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><title>Journal of colloid and interface science</title><description>[Display omitted]
Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner.
A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope.
The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</description><subject>Acoustic levitation</subject><subject>CO2 responsive</subject><subject>In-situ</subject><subject>Kinetics</subject><subject>Self-assembly</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouH78AU85emmdpMY24EUWv0DwouAtpMlUU7rpmskK--_Nsp6Fgbm8NzCPsQsBtQBxczXWowtUS5DXNehayOaALQRoVbUCmkO2AJCi0q1uj9kJ0QgghFJ6wcblq-Qh-o1Dz9dflpDnZCOFHObIy1hOOA0VZRt9iJ_cp3k9YeaUNz4Up9_yjyrZLSdnc8a0YwrKV_YzYg6OJ6Q52ujwjB0NdiI8_9un7P3h_m35VL28Pj4v714qJ1WXK9X0Qreu9-C9xLbDTqHuOlSITTtoLRvZOhjQgZYo--u2R3Gj-173aKED1Zyyy_3ddZq_N0jZrAI5nCYbcd6QaYQQJZQCWVC5R12aiRIOZp3CyqatEWB2Yc1odmHNLqwBbUrYIt3uJSxP_ARMhlzA8qAPCV02fg7_6b_6ooLi</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Argyri, Smaragda-Maria</creator><creator>Almeida, Maëva</creator><creator>Cousin, Fabrice</creator><creator>Evenäs, Lars</creator><creator>Fameau, Anne-Laure</creator><creator>Le Coeur, Clémence</creator><creator>Bordes, Romain</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250115</creationdate><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><author>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acoustic levitation</topic><topic>CO2 responsive</topic><topic>In-situ</topic><topic>Kinetics</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argyri, Smaragda-Maria</creatorcontrib><creatorcontrib>Almeida, Maëva</creatorcontrib><creatorcontrib>Cousin, Fabrice</creatorcontrib><creatorcontrib>Evenäs, Lars</creatorcontrib><creatorcontrib>Fameau, Anne-Laure</creatorcontrib><creatorcontrib>Le Coeur, Clémence</creatorcontrib><creatorcontrib>Bordes, Romain</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argyri, Smaragda-Maria</au><au>Almeida, Maëva</au><au>Cousin, Fabrice</au><au>Evenäs, Lars</au><au>Fameau, Anne-Laure</au><au>Le Coeur, Clémence</au><au>Bordes, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-01-15</date><risdate>2025</risdate><volume>678</volume><issue>Pt C</issue><spage>1181</spage><epage>1191</epage><pages>1181-1191</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner.
A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope.
The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.09.123</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.1181-1191 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111202502 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic levitation CO2 responsive In-situ Kinetics Self-assembly |
title | CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20induced%20phase%20transition%20on%20a%20self-standing%20droplet%20studied%20by%20X-ray%20scattering%20and%20magnetic%20resonance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Argyri,%20Smaragda-Maria&rft.date=2025-01-15&rft.volume=678&rft.issue=Pt%20C&rft.spage=1181&rft.epage=1191&rft.pages=1181-1191&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.09.123&rft_dat=%3Cproquest_cross%3E3111202502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111202502&rft_id=info:pmid/&rft_els_id=S002197972402188X&rfr_iscdi=true |