CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance

[Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-01, Vol.678 (Pt C), p.1181-1191
Hauptverfasser: Argyri, Smaragda-Maria, Almeida, Maëva, Cousin, Fabrice, Evenäs, Lars, Fameau, Anne-Laure, Le Coeur, Clémence, Bordes, Romain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue Pt C
container_start_page 1181
container_title Journal of colloid and interface science
container_volume 678
creator Argyri, Smaragda-Maria
Almeida, Maëva
Cousin, Fabrice
Evenäs, Lars
Fameau, Anne-Laure
Le Coeur, Clémence
Bordes, Romain
description [Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner. A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope. The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.
doi_str_mv 10.1016/j.jcis.2024.09.123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111202502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197972402188X</els_id><sourcerecordid>3111202502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouH78AU85emmdpMY24EUWv0DwouAtpMlUU7rpmskK--_Nsp6Fgbm8NzCPsQsBtQBxczXWowtUS5DXNehayOaALQRoVbUCmkO2AJCi0q1uj9kJ0QgghFJ6wcblq-Qh-o1Dz9dflpDnZCOFHObIy1hOOA0VZRt9iJ_cp3k9YeaUNz4Up9_yjyrZLSdnc8a0YwrKV_YzYg6OJ6Q52ujwjB0NdiI8_9un7P3h_m35VL28Pj4v714qJ1WXK9X0Qreu9-C9xLbDTqHuOlSITTtoLRvZOhjQgZYo--u2R3Gj-173aKED1Zyyy_3ddZq_N0jZrAI5nCYbcd6QaYQQJZQCWVC5R12aiRIOZp3CyqatEWB2Yc1odmHNLqwBbUrYIt3uJSxP_ARMhlzA8qAPCV02fg7_6b_6ooLi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111202502</pqid></control><display><type>article</type><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><source>Elsevier ScienceDirect Journals</source><creator>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</creator><creatorcontrib>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</creatorcontrib><description>[Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner. A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope. The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.09.123</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Acoustic levitation ; CO2 responsive ; In-situ ; Kinetics ; Self-assembly</subject><ispartof>Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.1181-1191</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002197972402188X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Argyri, Smaragda-Maria</creatorcontrib><creatorcontrib>Almeida, Maëva</creatorcontrib><creatorcontrib>Cousin, Fabrice</creatorcontrib><creatorcontrib>Evenäs, Lars</creatorcontrib><creatorcontrib>Fameau, Anne-Laure</creatorcontrib><creatorcontrib>Le Coeur, Clémence</creatorcontrib><creatorcontrib>Bordes, Romain</creatorcontrib><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><title>Journal of colloid and interface science</title><description>[Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner. A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope. The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</description><subject>Acoustic levitation</subject><subject>CO2 responsive</subject><subject>In-situ</subject><subject>Kinetics</subject><subject>Self-assembly</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouH78AU85emmdpMY24EUWv0DwouAtpMlUU7rpmskK--_Nsp6Fgbm8NzCPsQsBtQBxczXWowtUS5DXNehayOaALQRoVbUCmkO2AJCi0q1uj9kJ0QgghFJ6wcblq-Qh-o1Dz9dflpDnZCOFHObIy1hOOA0VZRt9iJ_cp3k9YeaUNz4Up9_yjyrZLSdnc8a0YwrKV_YzYg6OJ6Q52ujwjB0NdiI8_9un7P3h_m35VL28Pj4v714qJ1WXK9X0Qreu9-C9xLbDTqHuOlSITTtoLRvZOhjQgZYo--u2R3Gj-173aKED1Zyyy_3ddZq_N0jZrAI5nCYbcd6QaYQQJZQCWVC5R12aiRIOZp3CyqatEWB2Yc1odmHNLqwBbUrYIt3uJSxP_ARMhlzA8qAPCV02fg7_6b_6ooLi</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Argyri, Smaragda-Maria</creator><creator>Almeida, Maëva</creator><creator>Cousin, Fabrice</creator><creator>Evenäs, Lars</creator><creator>Fameau, Anne-Laure</creator><creator>Le Coeur, Clémence</creator><creator>Bordes, Romain</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250115</creationdate><title>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</title><author>Argyri, Smaragda-Maria ; Almeida, Maëva ; Cousin, Fabrice ; Evenäs, Lars ; Fameau, Anne-Laure ; Le Coeur, Clémence ; Bordes, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-53b197cbd0dd2e78e85e988e5ee37f992327c0fec092e2b47be169bb9bea08053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acoustic levitation</topic><topic>CO2 responsive</topic><topic>In-situ</topic><topic>Kinetics</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argyri, Smaragda-Maria</creatorcontrib><creatorcontrib>Almeida, Maëva</creatorcontrib><creatorcontrib>Cousin, Fabrice</creatorcontrib><creatorcontrib>Evenäs, Lars</creatorcontrib><creatorcontrib>Fameau, Anne-Laure</creatorcontrib><creatorcontrib>Le Coeur, Clémence</creatorcontrib><creatorcontrib>Bordes, Romain</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argyri, Smaragda-Maria</au><au>Almeida, Maëva</au><au>Cousin, Fabrice</au><au>Evenäs, Lars</au><au>Fameau, Anne-Laure</au><au>Le Coeur, Clémence</au><au>Bordes, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-01-15</date><risdate>2025</risdate><volume>678</volume><issue>Pt C</issue><spage>1181</spage><epage>1191</epage><pages>1181-1191</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Acoustic levitation is a suitable approach for studying processes occurring at the gas–liquid interfaces, as it allows its investigation in a contact-free manner while providing control over the gas phase. Here, we hypothesize that phase transitions induced by a CO2 rich atmosphere can be examined, at different length scales, in a contact-free manner. A system consisting of 12-hydroxysteric acid (HSA) soaps mixed with different ratios of monoethanolamine (MEA) and choline hydroxide, was prepared. Microliter droplets of the samples were acoustically levitated and monitored with a camera, while exposed to CO2 to modify the pH through diffusion at the air–liquid interface and inside the droplet. The phase transition and water mobility in the levitated droplets were evaluated through X-ray scattering (SAXS/WAXS) and magnetic resonance studies, in real-time. Finally, the droplets were collected and examined under the microscope. The introduction of CO2 gas induced a phase transition from micelles to multi-lamellar tubes, resulting in a gel-like behavior both in the bulk and at the interface. The high stability of the acoustic levitator allowed the investigation of this dynamic phenomenon, in real-time, in a contact-free environment. This study showcases the suitability of acoustic levitation as a tool to investigate complex chemical processes at interfaces.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.09.123</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.1181-1191
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3111202502
source Elsevier ScienceDirect Journals
subjects Acoustic levitation
CO2 responsive
In-situ
Kinetics
Self-assembly
title CO2 induced phase transition on a self-standing droplet studied by X-ray scattering and magnetic resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20induced%20phase%20transition%20on%20a%20self-standing%20droplet%20studied%20by%20X-ray%20scattering%20and%20magnetic%20resonance&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Argyri,%20Smaragda-Maria&rft.date=2025-01-15&rft.volume=678&rft.issue=Pt%20C&rft.spage=1181&rft.epage=1191&rft.pages=1181-1191&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.09.123&rft_dat=%3Cproquest_cross%3E3111202502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111202502&rft_id=info:pmid/&rft_els_id=S002197972402188X&rfr_iscdi=true