Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting

Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (50), p.e2405567-n/a
Hauptverfasser: Cui, Minghui, Guo, Rongjing, Wang, Feilong, Zhou, Yansong, Zhao, Wenqi, Liu, Yanjing, Ou, Qiongrong, Zhang, Shuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2405567
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Cui, Minghui
Guo, Rongjing
Wang, Feilong
Zhou, Yansong
Zhao, Wenqi
Liu, Yanjing
Ou, Qiongrong
Zhang, Shuyu
description Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production. Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.
doi_str_mv 10.1002/smll.202405567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111201704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111201704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</originalsourceid><addsrcrecordid>eNqFkb-OEzEQhy0E4u4CLSWyREOT4H_rzZZRCMdJi0BaEOXK8Y7BJ68dbC9oOx7hnpEnwVGOINFQzRTffDOaH0LPKFlRQtirNDq3YoQJUlWyfoAuqaR8KdeseXjuKblAVyndEsIpE_VjdMEbLgSj7BLdfXAqjQrf-GHSMOBNDqPVv37edVo5wF1wA0Trv-Cd_6r8kdgZY7UFr2es_IC7rPbW2TzjYPDOgc4xaJWVm1NO2ISIN-MBIhRlC9_B4e0UI_iMX4NPx7HPKkPE3aE4cln0BD0yyiV4el8X6NOb3cft22X7_vpmu2mXmlXreglCDNyImkhDAGSljWKSNrWoOIiBrJlSjFEgFbDGSKP3NeemlnRYS9C6MXyBXp68hxi-TZByP9qkwTnlIUyp55RSRmhNREFf_IPehin6cl2hBC8UL69doNWJ0jGkFMH0h2hHFeeekv6YVX_Mqj9nVQae32un_QjDGf8TTgGaE_DDOpj_o-u7d237V_4b_HekMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143201300</pqid></control><display><type>article</type><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><source>Access via Wiley Online Library</source><creator>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</creator><creatorcontrib>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</creatorcontrib><description>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for &gt;300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production. Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405567</identifier><identifier>PMID: 39344212</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ampere‐level current density ; Anion exchanging ; Atomic properties ; Catalysts ; Charge density ; Current density ; Density functional theory ; Efficiency ; Electrocatalysts ; Electrolysis ; hydrogen evolution reaction ; Hydrogen production ; Industrial water ; Mass transport ; Natural lighting ; Noble metals ; nonthermal plasma ; oxygen evolution reaction ; Soldering ; Stability ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2405567-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</cites><orcidid>0000-0003-2712-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202405567$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202405567$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39344212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Minghui</creatorcontrib><creatorcontrib>Guo, Rongjing</creatorcontrib><creatorcontrib>Wang, Feilong</creatorcontrib><creatorcontrib>Zhou, Yansong</creatorcontrib><creatorcontrib>Zhao, Wenqi</creatorcontrib><creatorcontrib>Liu, Yanjing</creatorcontrib><creatorcontrib>Ou, Qiongrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for &gt;300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production. Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</description><subject>ampere‐level current density</subject><subject>Anion exchanging</subject><subject>Atomic properties</subject><subject>Catalysts</subject><subject>Charge density</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Efficiency</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Industrial water</subject><subject>Mass transport</subject><subject>Natural lighting</subject><subject>Noble metals</subject><subject>nonthermal plasma</subject><subject>oxygen evolution reaction</subject><subject>Soldering</subject><subject>Stability</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb-OEzEQhy0E4u4CLSWyREOT4H_rzZZRCMdJi0BaEOXK8Y7BJ68dbC9oOx7hnpEnwVGOINFQzRTffDOaH0LPKFlRQtirNDq3YoQJUlWyfoAuqaR8KdeseXjuKblAVyndEsIpE_VjdMEbLgSj7BLdfXAqjQrf-GHSMOBNDqPVv37edVo5wF1wA0Trv-Cd_6r8kdgZY7UFr2es_IC7rPbW2TzjYPDOgc4xaJWVm1NO2ISIN-MBIhRlC9_B4e0UI_iMX4NPx7HPKkPE3aE4cln0BD0yyiV4el8X6NOb3cft22X7_vpmu2mXmlXreglCDNyImkhDAGSljWKSNrWoOIiBrJlSjFEgFbDGSKP3NeemlnRYS9C6MXyBXp68hxi-TZByP9qkwTnlIUyp55RSRmhNREFf_IPehin6cl2hBC8UL69doNWJ0jGkFMH0h2hHFeeekv6YVX_Mqj9nVQae32un_QjDGf8TTgGaE_DDOpj_o-u7d237V_4b_HekMw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Cui, Minghui</creator><creator>Guo, Rongjing</creator><creator>Wang, Feilong</creator><creator>Zhou, Yansong</creator><creator>Zhao, Wenqi</creator><creator>Liu, Yanjing</creator><creator>Ou, Qiongrong</creator><creator>Zhang, Shuyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2712-9931</orcidid></search><sort><creationdate>202412</creationdate><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><author>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ampere‐level current density</topic><topic>Anion exchanging</topic><topic>Atomic properties</topic><topic>Catalysts</topic><topic>Charge density</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Efficiency</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Industrial water</topic><topic>Mass transport</topic><topic>Natural lighting</topic><topic>Noble metals</topic><topic>nonthermal plasma</topic><topic>oxygen evolution reaction</topic><topic>Soldering</topic><topic>Stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Minghui</creatorcontrib><creatorcontrib>Guo, Rongjing</creatorcontrib><creatorcontrib>Wang, Feilong</creatorcontrib><creatorcontrib>Zhou, Yansong</creatorcontrib><creatorcontrib>Zhao, Wenqi</creatorcontrib><creatorcontrib>Liu, Yanjing</creatorcontrib><creatorcontrib>Ou, Qiongrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Minghui</au><au>Guo, Rongjing</au><au>Wang, Feilong</au><au>Zhou, Yansong</au><au>Zhao, Wenqi</au><au>Liu, Yanjing</au><au>Ou, Qiongrong</au><au>Zhang, Shuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>50</issue><spage>e2405567</spage><epage>n/a</epage><pages>e2405567-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for &gt;300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production. Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39344212</pmid><doi>10.1002/smll.202405567</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2712-9931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2405567-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3111201704
source Access via Wiley Online Library
subjects ampere‐level current density
Anion exchanging
Atomic properties
Catalysts
Charge density
Current density
Density functional theory
Efficiency
Electrocatalysts
Electrolysis
hydrogen evolution reaction
Hydrogen production
Industrial water
Mass transport
Natural lighting
Noble metals
nonthermal plasma
oxygen evolution reaction
Soldering
Stability
Water splitting
title Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20Induced%20Atomic%E2%80%90Scale%20Soldering%20Enhanced%20Efficiency%20and%20Stability%20of%20Electrocatalysts%20for%20Ampere%E2%80%90Level%20Current%20Density%20Water%20Splitting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cui,%20Minghui&rft.date=2024-12&rft.volume=20&rft.issue=50&rft.spage=e2405567&rft.epage=n/a&rft.pages=e2405567-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405567&rft_dat=%3Cproquest_cross%3E3111201704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143201300&rft_id=info:pmid/39344212&rfr_iscdi=true