Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting
Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catal...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (50), p.e2405567-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 50 |
container_start_page | e2405567 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Cui, Minghui Guo, Rongjing Wang, Feilong Zhou, Yansong Zhao, Wenqi Liu, Yanjing Ou, Qiongrong Zhang, Shuyu |
description | Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.
Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions. |
doi_str_mv | 10.1002/smll.202405567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111201704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111201704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</originalsourceid><addsrcrecordid>eNqFkb-OEzEQhy0E4u4CLSWyREOT4H_rzZZRCMdJi0BaEOXK8Y7BJ68dbC9oOx7hnpEnwVGOINFQzRTffDOaH0LPKFlRQtirNDq3YoQJUlWyfoAuqaR8KdeseXjuKblAVyndEsIpE_VjdMEbLgSj7BLdfXAqjQrf-GHSMOBNDqPVv37edVo5wF1wA0Trv-Cd_6r8kdgZY7UFr2es_IC7rPbW2TzjYPDOgc4xaJWVm1NO2ISIN-MBIhRlC9_B4e0UI_iMX4NPx7HPKkPE3aE4cln0BD0yyiV4el8X6NOb3cft22X7_vpmu2mXmlXreglCDNyImkhDAGSljWKSNrWoOIiBrJlSjFEgFbDGSKP3NeemlnRYS9C6MXyBXp68hxi-TZByP9qkwTnlIUyp55RSRmhNREFf_IPehin6cl2hBC8UL69doNWJ0jGkFMH0h2hHFeeekv6YVX_Mqj9nVQae32un_QjDGf8TTgGaE_DDOpj_o-u7d237V_4b_HekMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143201300</pqid></control><display><type>article</type><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><source>Access via Wiley Online Library</source><creator>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</creator><creatorcontrib>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</creatorcontrib><description>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.
Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405567</identifier><identifier>PMID: 39344212</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ampere‐level current density ; Anion exchanging ; Atomic properties ; Catalysts ; Charge density ; Current density ; Density functional theory ; Efficiency ; Electrocatalysts ; Electrolysis ; hydrogen evolution reaction ; Hydrogen production ; Industrial water ; Mass transport ; Natural lighting ; Noble metals ; nonthermal plasma ; oxygen evolution reaction ; Soldering ; Stability ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2405567-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</cites><orcidid>0000-0003-2712-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202405567$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202405567$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39344212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Minghui</creatorcontrib><creatorcontrib>Guo, Rongjing</creatorcontrib><creatorcontrib>Wang, Feilong</creatorcontrib><creatorcontrib>Zhou, Yansong</creatorcontrib><creatorcontrib>Zhao, Wenqi</creatorcontrib><creatorcontrib>Liu, Yanjing</creatorcontrib><creatorcontrib>Ou, Qiongrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.
Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</description><subject>ampere‐level current density</subject><subject>Anion exchanging</subject><subject>Atomic properties</subject><subject>Catalysts</subject><subject>Charge density</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Efficiency</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Industrial water</subject><subject>Mass transport</subject><subject>Natural lighting</subject><subject>Noble metals</subject><subject>nonthermal plasma</subject><subject>oxygen evolution reaction</subject><subject>Soldering</subject><subject>Stability</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkb-OEzEQhy0E4u4CLSWyREOT4H_rzZZRCMdJi0BaEOXK8Y7BJ68dbC9oOx7hnpEnwVGOINFQzRTffDOaH0LPKFlRQtirNDq3YoQJUlWyfoAuqaR8KdeseXjuKblAVyndEsIpE_VjdMEbLgSj7BLdfXAqjQrf-GHSMOBNDqPVv37edVo5wF1wA0Trv-Cd_6r8kdgZY7UFr2es_IC7rPbW2TzjYPDOgc4xaJWVm1NO2ISIN-MBIhRlC9_B4e0UI_iMX4NPx7HPKkPE3aE4cln0BD0yyiV4el8X6NOb3cft22X7_vpmu2mXmlXreglCDNyImkhDAGSljWKSNrWoOIiBrJlSjFEgFbDGSKP3NeemlnRYS9C6MXyBXp68hxi-TZByP9qkwTnlIUyp55RSRmhNREFf_IPehin6cl2hBC8UL69doNWJ0jGkFMH0h2hHFeeekv6YVX_Mqj9nVQae32un_QjDGf8TTgGaE_DDOpj_o-u7d237V_4b_HekMw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Cui, Minghui</creator><creator>Guo, Rongjing</creator><creator>Wang, Feilong</creator><creator>Zhou, Yansong</creator><creator>Zhao, Wenqi</creator><creator>Liu, Yanjing</creator><creator>Ou, Qiongrong</creator><creator>Zhang, Shuyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2712-9931</orcidid></search><sort><creationdate>202412</creationdate><title>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</title><author>Cui, Minghui ; Guo, Rongjing ; Wang, Feilong ; Zhou, Yansong ; Zhao, Wenqi ; Liu, Yanjing ; Ou, Qiongrong ; Zhang, Shuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2587-e44d3f4706f0ee65cfa26197453e4d082aa221e05e29f6fcb733f761d86ecc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ampere‐level current density</topic><topic>Anion exchanging</topic><topic>Atomic properties</topic><topic>Catalysts</topic><topic>Charge density</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Efficiency</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Industrial water</topic><topic>Mass transport</topic><topic>Natural lighting</topic><topic>Noble metals</topic><topic>nonthermal plasma</topic><topic>oxygen evolution reaction</topic><topic>Soldering</topic><topic>Stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Minghui</creatorcontrib><creatorcontrib>Guo, Rongjing</creatorcontrib><creatorcontrib>Wang, Feilong</creatorcontrib><creatorcontrib>Zhou, Yansong</creatorcontrib><creatorcontrib>Zhao, Wenqi</creatorcontrib><creatorcontrib>Liu, Yanjing</creatorcontrib><creatorcontrib>Ou, Qiongrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Minghui</au><au>Guo, Rongjing</au><au>Wang, Feilong</au><au>Zhou, Yansong</au><au>Zhao, Wenqi</au><au>Liu, Yanjing</au><au>Ou, Qiongrong</au><au>Zhang, Shuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>50</issue><spage>e2405567</spage><epage>n/a</epage><pages>e2405567-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni3N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm−2, and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm−2. When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm−2. Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm−2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni3N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.
Plasma treatment optimizes the interface between the catalyst and the substrate, producing an “atomic‐scale soldering” effect, which significantly improves catalyst adhesion and charge transport. Plasma surface functionalization modification further improves the catalytic performance of HER and OER, obtaining a high‐performance total water‐splitting catalyst suitable for ampere‐level current density conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39344212</pmid><doi>10.1002/smll.202405567</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2712-9931</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (50), p.e2405567-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3111201704 |
source | Access via Wiley Online Library |
subjects | ampere‐level current density Anion exchanging Atomic properties Catalysts Charge density Current density Density functional theory Efficiency Electrocatalysts Electrolysis hydrogen evolution reaction Hydrogen production Industrial water Mass transport Natural lighting Noble metals nonthermal plasma oxygen evolution reaction Soldering Stability Water splitting |
title | Plasma Induced Atomic‐Scale Soldering Enhanced Efficiency and Stability of Electrocatalysts for Ampere‐Level Current Density Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20Induced%20Atomic%E2%80%90Scale%20Soldering%20Enhanced%20Efficiency%20and%20Stability%20of%20Electrocatalysts%20for%20Ampere%E2%80%90Level%20Current%20Density%20Water%20Splitting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cui,%20Minghui&rft.date=2024-12&rft.volume=20&rft.issue=50&rft.spage=e2405567&rft.epage=n/a&rft.pages=e2405567-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405567&rft_dat=%3Cproquest_cross%3E3111201704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143201300&rft_id=info:pmid/39344212&rfr_iscdi=true |