Temporal geometric mapping defines morphoelastic growth model of Type B aortic dissection evolution

The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-11, Vol.182, p.109194, Article 109194
Hauptverfasser: Khabaz, Kameel, Kim, Junsung, Milner, Ross, Nguyen, Nhung, Pocivavsek, Luka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (δS vs. AT−1), quantitatively demonstrate an increase in δS. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients. [Display omitted] •Spatial gradients of local growth drive morphologic shape changes in aortic disease.•Image registration, finite element modeling, and geometric analysis are integrated.•Our method quantitatively links past geometric change to future geometric evolution.•Local area changes from patient scans define a heterogeneous growth field for FEA.•Simulation accurately predicts shape evolution in aortic disease patients.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.109194