Surpassing the Standard Quantum Limit Using an Optical Spring

Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is nec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-09, Vol.133 (11), p.113602, Article 113602
Hauptverfasser: Cullen, Torrey, Pagano, Ronald, Aronson, Scott, Cripe, Jonathan, Sharif, Sarah Safura, Lollie, Michelle, Cain, Henry, Heu, Paula, Follman, David, Cole, Garrett D, Aggarwal, Nancy, Corbitt, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 113602
container_title Physical review letters
container_volume 133
creator Cullen, Torrey
Pagano, Ronald
Aronson, Scott
Cripe, Jonathan
Sharif, Sarah Safura
Lollie, Michelle
Cain, Henry
Heu, Paula
Follman, David
Cole, Garrett D
Aggarwal, Nancy
Corbitt, Thomas
description Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a backaction evading measurement technique, reduce thermal noise to below the level of backaction, and exploit cancellations of any excess noise contributions at the detector. Many proof of principle experiments have been performed, but only recently has an experiment achieved sensitivity below the SQL. In this work, we extend that initial demonstration and realize sub-SQL sensitivity nearly two times better than previous measurements, and with an architecture applicable to interferometric gravitational wave detectors. In fact, this technique is directly applicable to Advanced LIGO, which could observe similar effects with a detuned signal recycling cavity. We measure a total sensitivity below the SQL by 2.8 dB, corresponding to a reduction in the noise power by 72±5.1% below the quantum limit. Through the use of a detuned cavity and the optical spring effect, this noise reduction is tunable, allowing us to choose the desired range of frequencies that fall below the SQL. This result demonstrates access to sensitivities well below the SQL at frequencies applicable to LIGO, with the potential to extend the reach of gravitational wave detectors further into the Universe.
doi_str_mv 10.1103/PhysRevLett.133.113602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3110729649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110729649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-ff1da11898a449db6ccb0e3cafb28c85e61c6b4e7c5b654d9fd6c7a3450e546f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk7_wuilN505TZo0F17I8AsKU-uuQ5qkrtJ2NUmF_Xurm-LVgZfnPefwIDQHvADA5Opps_Mv9jO3ISyAkDEkDCdHaAqYi5gD0GM0xZhALDDmE3Tm_TvGGBKWnaIJEYSA4HyKrovB9cr7unuLwsZGRVCdUc5Ez4PqwtBGed3WIVr_AKqLVn2otWqiondjco5OKtV4e3GYM7S-u31dPsT56v5xeZPHOiEsxFUFRgFkIlOUClMyrUtsiVZVmWQ6Sy0DzUpquU5LllIjKsM0V4Sm2KaUVWSGLvd7e7f9GKwPsq29tk2jOrsdvCSjE54IRsWIsj2q3dZ7Zys5ftoqt5OA5bc6-U-dHNXJvbqxOD_cGMrWmr_aryvyBa0ibXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110729649</pqid></control><display><type>article</type><title>Surpassing the Standard Quantum Limit Using an Optical Spring</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cullen, Torrey ; Pagano, Ronald ; Aronson, Scott ; Cripe, Jonathan ; Sharif, Sarah Safura ; Lollie, Michelle ; Cain, Henry ; Heu, Paula ; Follman, David ; Cole, Garrett D ; Aggarwal, Nancy ; Corbitt, Thomas</creator><creatorcontrib>Cullen, Torrey ; Pagano, Ronald ; Aronson, Scott ; Cripe, Jonathan ; Sharif, Sarah Safura ; Lollie, Michelle ; Cain, Henry ; Heu, Paula ; Follman, David ; Cole, Garrett D ; Aggarwal, Nancy ; Corbitt, Thomas</creatorcontrib><description>Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a backaction evading measurement technique, reduce thermal noise to below the level of backaction, and exploit cancellations of any excess noise contributions at the detector. Many proof of principle experiments have been performed, but only recently has an experiment achieved sensitivity below the SQL. In this work, we extend that initial demonstration and realize sub-SQL sensitivity nearly two times better than previous measurements, and with an architecture applicable to interferometric gravitational wave detectors. In fact, this technique is directly applicable to Advanced LIGO, which could observe similar effects with a detuned signal recycling cavity. We measure a total sensitivity below the SQL by 2.8 dB, corresponding to a reduction in the noise power by 72±5.1% below the quantum limit. Through the use of a detuned cavity and the optical spring effect, this noise reduction is tunable, allowing us to choose the desired range of frequencies that fall below the SQL. This result demonstrates access to sensitivities well below the SQL at frequencies applicable to LIGO, with the potential to extend the reach of gravitational wave detectors further into the Universe.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.113602</identifier><identifier>PMID: 39331977</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2024-09, Vol.133 (11), p.113602, Article 113602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-ff1da11898a449db6ccb0e3cafb28c85e61c6b4e7c5b654d9fd6c7a3450e546f3</cites><orcidid>0000-0002-4667-6650 ; 0000-0001-7149-3218 ; 0000-0001-8075-4088 ; 0000-0001-8362-0130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39331977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cullen, Torrey</creatorcontrib><creatorcontrib>Pagano, Ronald</creatorcontrib><creatorcontrib>Aronson, Scott</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Sharif, Sarah Safura</creatorcontrib><creatorcontrib>Lollie, Michelle</creatorcontrib><creatorcontrib>Cain, Henry</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Cole, Garrett D</creatorcontrib><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><title>Surpassing the Standard Quantum Limit Using an Optical Spring</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a backaction evading measurement technique, reduce thermal noise to below the level of backaction, and exploit cancellations of any excess noise contributions at the detector. Many proof of principle experiments have been performed, but only recently has an experiment achieved sensitivity below the SQL. In this work, we extend that initial demonstration and realize sub-SQL sensitivity nearly two times better than previous measurements, and with an architecture applicable to interferometric gravitational wave detectors. In fact, this technique is directly applicable to Advanced LIGO, which could observe similar effects with a detuned signal recycling cavity. We measure a total sensitivity below the SQL by 2.8 dB, corresponding to a reduction in the noise power by 72±5.1% below the quantum limit. Through the use of a detuned cavity and the optical spring effect, this noise reduction is tunable, allowing us to choose the desired range of frequencies that fall below the SQL. This result demonstrates access to sensitivities well below the SQL at frequencies applicable to LIGO, with the potential to extend the reach of gravitational wave detectors further into the Universe.</description><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobk7_wuilN505TZo0F17I8AsKU-uuQ5qkrtJ2NUmF_Xurm-LVgZfnPefwIDQHvADA5Opps_Mv9jO3ISyAkDEkDCdHaAqYi5gD0GM0xZhALDDmE3Tm_TvGGBKWnaIJEYSA4HyKrovB9cr7unuLwsZGRVCdUc5Ez4PqwtBGed3WIVr_AKqLVn2otWqiondjco5OKtV4e3GYM7S-u31dPsT56v5xeZPHOiEsxFUFRgFkIlOUClMyrUtsiVZVmWQ6Sy0DzUpquU5LllIjKsM0V4Sm2KaUVWSGLvd7e7f9GKwPsq29tk2jOrsdvCSjE54IRsWIsj2q3dZ7Zys5ftoqt5OA5bc6-U-dHNXJvbqxOD_cGMrWmr_aryvyBa0ibXY</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Cullen, Torrey</creator><creator>Pagano, Ronald</creator><creator>Aronson, Scott</creator><creator>Cripe, Jonathan</creator><creator>Sharif, Sarah Safura</creator><creator>Lollie, Michelle</creator><creator>Cain, Henry</creator><creator>Heu, Paula</creator><creator>Follman, David</creator><creator>Cole, Garrett D</creator><creator>Aggarwal, Nancy</creator><creator>Corbitt, Thomas</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4667-6650</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0001-8075-4088</orcidid><orcidid>https://orcid.org/0000-0001-8362-0130</orcidid></search><sort><creationdate>20240913</creationdate><title>Surpassing the Standard Quantum Limit Using an Optical Spring</title><author>Cullen, Torrey ; Pagano, Ronald ; Aronson, Scott ; Cripe, Jonathan ; Sharif, Sarah Safura ; Lollie, Michelle ; Cain, Henry ; Heu, Paula ; Follman, David ; Cole, Garrett D ; Aggarwal, Nancy ; Corbitt, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-ff1da11898a449db6ccb0e3cafb28c85e61c6b4e7c5b654d9fd6c7a3450e546f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cullen, Torrey</creatorcontrib><creatorcontrib>Pagano, Ronald</creatorcontrib><creatorcontrib>Aronson, Scott</creatorcontrib><creatorcontrib>Cripe, Jonathan</creatorcontrib><creatorcontrib>Sharif, Sarah Safura</creatorcontrib><creatorcontrib>Lollie, Michelle</creatorcontrib><creatorcontrib>Cain, Henry</creatorcontrib><creatorcontrib>Heu, Paula</creatorcontrib><creatorcontrib>Follman, David</creatorcontrib><creatorcontrib>Cole, Garrett D</creatorcontrib><creatorcontrib>Aggarwal, Nancy</creatorcontrib><creatorcontrib>Corbitt, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cullen, Torrey</au><au>Pagano, Ronald</au><au>Aronson, Scott</au><au>Cripe, Jonathan</au><au>Sharif, Sarah Safura</au><au>Lollie, Michelle</au><au>Cain, Henry</au><au>Heu, Paula</au><au>Follman, David</au><au>Cole, Garrett D</au><au>Aggarwal, Nancy</au><au>Corbitt, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surpassing the Standard Quantum Limit Using an Optical Spring</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-09-13</date><risdate>2024</risdate><volume>133</volume><issue>11</issue><spage>113602</spage><pages>113602-</pages><artnum>113602</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>Quantum mechanics places noise limits and sensitivity restrictions on physical measurements. The balance between unwanted backaction and the precision of optical measurements imposes a standard quantum limit (SQL) on interferometric systems. In order to realize a sensitivity below the SQL, it is necessary to leverage a backaction evading measurement technique, reduce thermal noise to below the level of backaction, and exploit cancellations of any excess noise contributions at the detector. Many proof of principle experiments have been performed, but only recently has an experiment achieved sensitivity below the SQL. In this work, we extend that initial demonstration and realize sub-SQL sensitivity nearly two times better than previous measurements, and with an architecture applicable to interferometric gravitational wave detectors. In fact, this technique is directly applicable to Advanced LIGO, which could observe similar effects with a detuned signal recycling cavity. We measure a total sensitivity below the SQL by 2.8 dB, corresponding to a reduction in the noise power by 72±5.1% below the quantum limit. Through the use of a detuned cavity and the optical spring effect, this noise reduction is tunable, allowing us to choose the desired range of frequencies that fall below the SQL. This result demonstrates access to sensitivities well below the SQL at frequencies applicable to LIGO, with the potential to extend the reach of gravitational wave detectors further into the Universe.</abstract><cop>United States</cop><pmid>39331977</pmid><doi>10.1103/PhysRevLett.133.113602</doi><orcidid>https://orcid.org/0000-0002-4667-6650</orcidid><orcidid>https://orcid.org/0000-0001-7149-3218</orcidid><orcidid>https://orcid.org/0000-0001-8075-4088</orcidid><orcidid>https://orcid.org/0000-0001-8362-0130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-09, Vol.133 (11), p.113602, Article 113602
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_proquest_miscellaneous_3110729649
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Surpassing the Standard Quantum Limit Using an Optical Spring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surpassing%20the%20Standard%20Quantum%20Limit%20Using%20an%20Optical%20Spring&rft.jtitle=Physical%20review%20letters&rft.au=Cullen,%20Torrey&rft.date=2024-09-13&rft.volume=133&rft.issue=11&rft.spage=113602&rft.pages=113602-&rft.artnum=113602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.113602&rft_dat=%3Cproquest_cross%3E3110729649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110729649&rft_id=info:pmid/39331977&rfr_iscdi=true