Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming
We analyze the convergence of an infeasible inexact potential reduction method for quadratic programming problems. We show that the convergence of this method is achieved if the residual of the KKT system satisfies a bound related to the duality gap. This result suggests stopping criteria for inner...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2007-12, Vol.135 (3), p.355-366 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 3 |
container_start_page | 355 |
container_title | Journal of optimization theory and applications |
container_volume | 135 |
creator | CAFIERI, S D'APUZZO, M DE SIMONE, V DI SERAFINO, D TORALDO, G |
description | We analyze the convergence of an infeasible inexact potential reduction method for quadratic programming problems. We show that the convergence of this method is achieved if the residual of the KKT system satisfies a bound related to the duality gap. This result suggests stopping criteria for inner iterations that can be used to adapt the accuracy of the computed direction to the quality of the potential reduction iterate in order to achieve computational efficiency. |
doi_str_mv | 10.1007/s10957-007-9264-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31104618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082196316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-3c5f13d903248aa8581a75c27bf43559eb4015150b154de94b3005864893b4793</originalsourceid><addsrcrecordid>eNp9kU9rFEEQxZugkDXmA-TWCBEvo1VT_fcYlmgCEaOYa4aenp51wmx30j0jybd3NhsQPHiqd_i9V_AeYycIHxFAfyoIVupqkZWtlajogK1Qaqpqo80rtgKo64pqsofsTSl3AGCNFit2u07xd8ibEH3gZ9GNT2UoPPXcRX4Zw6PzE79OU4jT4Eb-I3Szn4YU-dcw_Uod71PmzwmP_PvsuuymwfPrnDbZbbdD3Lxlr3s3lnD8co_Yzefzn-uL6urbl8v12VXlSampIi97pM4C1cI4Z6RBp6WvddsLktKGVgBKlNCiFF2woiUAaZQwllqhLR2x9_vc-5we5lCmZjsUH8bRxZDm0hAiCIVmAT_8F0QwNVpFqBb03T_oXZrzUtFCWaUAye4e4x7yOZWSQ9_c52Hr8tOS1OyWafbLNDu5W6ahxXP6EuyKd2OfXfRD-Wu0Sw8aNf0BbluL-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196601399</pqid></control><display><type>article</type><title>Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming</title><source>Springer Nature - Complete Springer Journals</source><creator>CAFIERI, S ; D'APUZZO, M ; DE SIMONE, V ; DI SERAFINO, D ; TORALDO, G</creator><creatorcontrib>CAFIERI, S ; D'APUZZO, M ; DE SIMONE, V ; DI SERAFINO, D ; TORALDO, G</creatorcontrib><description>We analyze the convergence of an infeasible inexact potential reduction method for quadratic programming problems. We show that the convergence of this method is achieved if the residual of the KKT system satisfies a bound related to the duality gap. This result suggests stopping criteria for inner iterations that can be used to adapt the accuracy of the computed direction to the quality of the potential reduction iterate in order to achieve computational efficiency.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-007-9264-3</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Algorithms ; Applied sciences ; Computation ; Computational efficiency ; Convergence ; Criteria ; Exact sciences and technology ; Iterative methods ; Mathematical programming ; Methods ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Quadratic programming ; Reduction ; Studies</subject><ispartof>Journal of optimization theory and applications, 2007-12, Vol.135 (3), p.355-366</ispartof><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-3c5f13d903248aa8581a75c27bf43559eb4015150b154de94b3005864893b4793</citedby><cites>FETCH-LOGICAL-c366t-3c5f13d903248aa8581a75c27bf43559eb4015150b154de94b3005864893b4793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19903717$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CAFIERI, S</creatorcontrib><creatorcontrib>D'APUZZO, M</creatorcontrib><creatorcontrib>DE SIMONE, V</creatorcontrib><creatorcontrib>DI SERAFINO, D</creatorcontrib><creatorcontrib>TORALDO, G</creatorcontrib><title>Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming</title><title>Journal of optimization theory and applications</title><description>We analyze the convergence of an infeasible inexact potential reduction method for quadratic programming problems. We show that the convergence of this method is achieved if the residual of the KKT system satisfies a bound related to the duality gap. This result suggests stopping criteria for inner iterations that can be used to adapt the accuracy of the computed direction to the quality of the potential reduction iterate in order to achieve computational efficiency.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Exact sciences and technology</subject><subject>Iterative methods</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Reduction</subject><subject>Studies</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9rFEEQxZugkDXmA-TWCBEvo1VT_fcYlmgCEaOYa4aenp51wmx30j0jybd3NhsQPHiqd_i9V_AeYycIHxFAfyoIVupqkZWtlajogK1Qaqpqo80rtgKo64pqsofsTSl3AGCNFit2u07xd8ibEH3gZ9GNT2UoPPXcRX4Zw6PzE79OU4jT4Eb-I3Szn4YU-dcw_Uod71PmzwmP_PvsuuymwfPrnDbZbbdD3Lxlr3s3lnD8co_Yzefzn-uL6urbl8v12VXlSampIi97pM4C1cI4Z6RBp6WvddsLktKGVgBKlNCiFF2woiUAaZQwllqhLR2x9_vc-5we5lCmZjsUH8bRxZDm0hAiCIVmAT_8F0QwNVpFqBb03T_oXZrzUtFCWaUAye4e4x7yOZWSQ9_c52Hr8tOS1OyWafbLNDu5W6ahxXP6EuyKd2OfXfRD-Wu0Sw8aNf0BbluL-g</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>CAFIERI, S</creator><creator>D'APUZZO, M</creator><creator>DE SIMONE, V</creator><creator>DI SERAFINO, D</creator><creator>TORALDO, G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20071201</creationdate><title>Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming</title><author>CAFIERI, S ; D'APUZZO, M ; DE SIMONE, V ; DI SERAFINO, D ; TORALDO, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-3c5f13d903248aa8581a75c27bf43559eb4015150b154de94b3005864893b4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Exact sciences and technology</topic><topic>Iterative methods</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Reduction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CAFIERI, S</creatorcontrib><creatorcontrib>D'APUZZO, M</creatorcontrib><creatorcontrib>DE SIMONE, V</creatorcontrib><creatorcontrib>DI SERAFINO, D</creatorcontrib><creatorcontrib>TORALDO, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CAFIERI, S</au><au>D'APUZZO, M</au><au>DE SIMONE, V</au><au>DI SERAFINO, D</au><au>TORALDO, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>135</volume><issue>3</issue><spage>355</spage><epage>366</epage><pages>355-366</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>We analyze the convergence of an infeasible inexact potential reduction method for quadratic programming problems. We show that the convergence of this method is achieved if the residual of the KKT system satisfies a bound related to the duality gap. This result suggests stopping criteria for inner iterations that can be used to adapt the accuracy of the computed direction to the quality of the potential reduction iterate in order to achieve computational efficiency.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s10957-007-9264-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2007-12, Vol.135 (3), p.355-366 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_31104618 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applied sciences Computation Computational efficiency Convergence Criteria Exact sciences and technology Iterative methods Mathematical programming Methods Operational research and scientific management Operational research. Management science Optimization Quadratic programming Reduction Studies |
title | Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Analysis%20of%20an%20Inexact%20Potential%20Reduction%20Method%20for%20Convex%20Quadratic%20Programming&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=CAFIERI,%20S&rft.date=2007-12-01&rft.volume=135&rft.issue=3&rft.spage=355&rft.epage=366&rft.pages=355-366&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-007-9264-3&rft_dat=%3Cproquest_cross%3E1082196316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196601399&rft_id=info:pmid/&rfr_iscdi=true |