Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii

Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2025-01, Vol.81 (1), p.477-489
Hauptverfasser: Huangfu, Ningbo, Shang, Jiao, Guo, Lixiang, Zhu, Xiangzhen, Zhang, Kaixin, Niu, Ruichang, Li, Dongyang, Gao, Xueke, Wang, Li, Ji, Jichao, Luo, Junyu, Cui, Jinjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 1
container_start_page 477
container_title Pest management science
container_volume 81
creator Huangfu, Ningbo
Shang, Jiao
Guo, Lixiang
Zhu, Xiangzhen
Zhang, Kaixin
Niu, Ruichang
Li, Dongyang
Gao, Xueke
Wang, Li
Ji, Jichao
Luo, Junyu
Cui, Jinjie
description Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear. Results Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone. Conclusion Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry. Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.
doi_str_mv 10.1002/ps.8449
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3110405653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110405653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</originalsourceid><addsrcrecordid>eNp10dtKAzEQBuAgimd8Awl4oSCtSTbZ3VwW8QRFxQN4tyTZWZuypyZbpXc-gs_ok5ha2wvBqwzkmx9mBqEDSvqUEHbW-n7KuVxD21SwuMelTNdXdfqyhXa8HxNCpJRsE21FMmKSM7aNJkNbAO6ULgGrWpUzb30ocvxwO_j6-HyECXbwBqrEo8ZVsPztnKr9K9TgVGeb0IehKMB0HjcFzqHsVAXdyNkaNzUetKPQ9tp4P2ut3UMbhSo97P--u-j58uLp_Lo3vLu6OR8Me4ZFiezpNJYyVjJPpS64AipEnjJpijQhuWFaUxkllDFGDdeGAM1ZrCOuNORGsASiXXSyyG1dM5mC77LKegNlqWpopj6LKCWciFhEgR79oeNm6sJUc8VZIriQIqjjhTIujOKgyFpnK-VmGSXZ_ApZ67P5FYI8_M2b6grylVuuPYDTBXi3Jcz-y8nuH3_ivgFtN5Fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142754595</pqid></control><display><type>article</type><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</creator><creatorcontrib>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</creatorcontrib><description>Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear. Results Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone. Conclusion Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry. Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</description><identifier>ISSN: 1526-498X</identifier><identifier>ISSN: 1526-4998</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.8449</identifier><identifier>PMID: 39329422</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Agricultural practices ; Animals ; Aphids - drug effects ; Aphids - genetics ; Aphis gossypii ; Cell proliferation ; Cotton ; Deltamethrin ; DNA biosynthesis ; Fecundity ; Fertility - drug effects ; Homologous recombination ; Hormesis ; hormetic dose response ; Insecticides ; Insecticides - pharmacology ; Integrated pest management ; Life Tables ; Molecular modelling ; Nitriles - pharmacology ; Nitriles - toxicity ; Offspring ; Pest control ; Pests ; Post-transcription ; Pyrethrins - pharmacology ; Reproduction - drug effects ; RNA-Seq ; Rotation ; Side effects ; Signal processing ; Stimulation ; sublethal effects ; Tables (data) ; Transcriptome - drug effects ; Transcriptomes ; Transcriptomics ; transgenerational effects</subject><ispartof>Pest management science, 2025-01, Vol.81 (1), p.477-489</ispartof><rights>2024 Society of Chemical Industry.</rights><rights>2025 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</cites><orcidid>0000-0002-0594-8760 ; 0000-0002-7849-0201 ; 0000-0001-5435-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.8449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.8449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39329422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huangfu, Ningbo</creatorcontrib><creatorcontrib>Shang, Jiao</creatorcontrib><creatorcontrib>Guo, Lixiang</creatorcontrib><creatorcontrib>Zhu, Xiangzhen</creatorcontrib><creatorcontrib>Zhang, Kaixin</creatorcontrib><creatorcontrib>Niu, Ruichang</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Gao, Xueke</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Ji, Jichao</creatorcontrib><creatorcontrib>Luo, Junyu</creatorcontrib><creatorcontrib>Cui, Jinjie</creatorcontrib><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear. Results Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone. Conclusion Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry. Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</description><subject>Agricultural practices</subject><subject>Animals</subject><subject>Aphids - drug effects</subject><subject>Aphids - genetics</subject><subject>Aphis gossypii</subject><subject>Cell proliferation</subject><subject>Cotton</subject><subject>Deltamethrin</subject><subject>DNA biosynthesis</subject><subject>Fecundity</subject><subject>Fertility - drug effects</subject><subject>Homologous recombination</subject><subject>Hormesis</subject><subject>hormetic dose response</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Integrated pest management</subject><subject>Life Tables</subject><subject>Molecular modelling</subject><subject>Nitriles - pharmacology</subject><subject>Nitriles - toxicity</subject><subject>Offspring</subject><subject>Pest control</subject><subject>Pests</subject><subject>Post-transcription</subject><subject>Pyrethrins - pharmacology</subject><subject>Reproduction - drug effects</subject><subject>RNA-Seq</subject><subject>Rotation</subject><subject>Side effects</subject><subject>Signal processing</subject><subject>Stimulation</subject><subject>sublethal effects</subject><subject>Tables (data)</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>transgenerational effects</subject><issn>1526-498X</issn><issn>1526-4998</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10dtKAzEQBuAgimd8Awl4oSCtSTbZ3VwW8QRFxQN4tyTZWZuypyZbpXc-gs_ok5ha2wvBqwzkmx9mBqEDSvqUEHbW-n7KuVxD21SwuMelTNdXdfqyhXa8HxNCpJRsE21FMmKSM7aNJkNbAO6ULgGrWpUzb30ocvxwO_j6-HyECXbwBqrEo8ZVsPztnKr9K9TgVGeb0IehKMB0HjcFzqHsVAXdyNkaNzUetKPQ9tp4P2ut3UMbhSo97P--u-j58uLp_Lo3vLu6OR8Me4ZFiezpNJYyVjJPpS64AipEnjJpijQhuWFaUxkllDFGDdeGAM1ZrCOuNORGsASiXXSyyG1dM5mC77LKegNlqWpopj6LKCWciFhEgR79oeNm6sJUc8VZIriQIqjjhTIujOKgyFpnK-VmGSXZ_ApZ67P5FYI8_M2b6grylVuuPYDTBXi3Jcz-y8nuH3_ivgFtN5Fm</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Huangfu, Ningbo</creator><creator>Shang, Jiao</creator><creator>Guo, Lixiang</creator><creator>Zhu, Xiangzhen</creator><creator>Zhang, Kaixin</creator><creator>Niu, Ruichang</creator><creator>Li, Dongyang</creator><creator>Gao, Xueke</creator><creator>Wang, Li</creator><creator>Ji, Jichao</creator><creator>Luo, Junyu</creator><creator>Cui, Jinjie</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0594-8760</orcidid><orcidid>https://orcid.org/0000-0002-7849-0201</orcidid><orcidid>https://orcid.org/0000-0001-5435-3985</orcidid></search><sort><creationdate>202501</creationdate><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><author>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Agricultural practices</topic><topic>Animals</topic><topic>Aphids - drug effects</topic><topic>Aphids - genetics</topic><topic>Aphis gossypii</topic><topic>Cell proliferation</topic><topic>Cotton</topic><topic>Deltamethrin</topic><topic>DNA biosynthesis</topic><topic>Fecundity</topic><topic>Fertility - drug effects</topic><topic>Homologous recombination</topic><topic>Hormesis</topic><topic>hormetic dose response</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Integrated pest management</topic><topic>Life Tables</topic><topic>Molecular modelling</topic><topic>Nitriles - pharmacology</topic><topic>Nitriles - toxicity</topic><topic>Offspring</topic><topic>Pest control</topic><topic>Pests</topic><topic>Post-transcription</topic><topic>Pyrethrins - pharmacology</topic><topic>Reproduction - drug effects</topic><topic>RNA-Seq</topic><topic>Rotation</topic><topic>Side effects</topic><topic>Signal processing</topic><topic>Stimulation</topic><topic>sublethal effects</topic><topic>Tables (data)</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>transgenerational effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huangfu, Ningbo</creatorcontrib><creatorcontrib>Shang, Jiao</creatorcontrib><creatorcontrib>Guo, Lixiang</creatorcontrib><creatorcontrib>Zhu, Xiangzhen</creatorcontrib><creatorcontrib>Zhang, Kaixin</creatorcontrib><creatorcontrib>Niu, Ruichang</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Gao, Xueke</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Ji, Jichao</creatorcontrib><creatorcontrib>Luo, Junyu</creatorcontrib><creatorcontrib>Cui, Jinjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huangfu, Ningbo</au><au>Shang, Jiao</au><au>Guo, Lixiang</au><au>Zhu, Xiangzhen</au><au>Zhang, Kaixin</au><au>Niu, Ruichang</au><au>Li, Dongyang</au><au>Gao, Xueke</au><au>Wang, Li</au><au>Ji, Jichao</au><au>Luo, Junyu</au><au>Cui, Jinjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2025-01</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><spage>477</spage><epage>489</epage><pages>477-489</pages><issn>1526-498X</issn><issn>1526-4998</issn><eissn>1526-4998</eissn><abstract>Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear. Results Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone. Conclusion Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry. Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>39329422</pmid><doi>10.1002/ps.8449</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0594-8760</orcidid><orcidid>https://orcid.org/0000-0002-7849-0201</orcidid><orcidid>https://orcid.org/0000-0001-5435-3985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2025-01, Vol.81 (1), p.477-489
issn 1526-498X
1526-4998
1526-4998
language eng
recordid cdi_proquest_miscellaneous_3110405653
source MEDLINE; Access via Wiley Online Library
subjects Agricultural practices
Animals
Aphids - drug effects
Aphids - genetics
Aphis gossypii
Cell proliferation
Cotton
Deltamethrin
DNA biosynthesis
Fecundity
Fertility - drug effects
Homologous recombination
Hormesis
hormetic dose response
Insecticides
Insecticides - pharmacology
Integrated pest management
Life Tables
Molecular modelling
Nitriles - pharmacology
Nitriles - toxicity
Offspring
Pest control
Pests
Post-transcription
Pyrethrins - pharmacology
Reproduction - drug effects
RNA-Seq
Rotation
Side effects
Signal processing
Stimulation
sublethal effects
Tables (data)
Transcriptome - drug effects
Transcriptomes
Transcriptomics
transgenerational effects
title Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20table%20analysis%20and%20RNA%E2%80%90Seq%20reveal%20hormesis%20and%20transgenerational%20effects%20of%20deltamethrin%20on%20Aphis%20gossypii&rft.jtitle=Pest%20management%20science&rft.au=Huangfu,%20Ningbo&rft.date=2025-01&rft.volume=81&rft.issue=1&rft.spage=477&rft.epage=489&rft.pages=477-489&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.8449&rft_dat=%3Cproquest_cross%3E3110405653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142754595&rft_id=info:pmid/39329422&rfr_iscdi=true