Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii
Background Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. How...
Gespeichert in:
Veröffentlicht in: | Pest management science 2025-01, Vol.81 (1), p.477-489 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 1 |
container_start_page | 477 |
container_title | Pest management science |
container_volume | 81 |
creator | Huangfu, Ningbo Shang, Jiao Guo, Lixiang Zhu, Xiangzhen Zhang, Kaixin Niu, Ruichang Li, Dongyang Gao, Xueke Wang, Li Ji, Jichao Luo, Junyu Cui, Jinjie |
description | Background
Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear.
Results
Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone.
Conclusion
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry.
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase. |
doi_str_mv | 10.1002/ps.8449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3110405653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110405653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</originalsourceid><addsrcrecordid>eNp10dtKAzEQBuAgimd8Awl4oSCtSTbZ3VwW8QRFxQN4tyTZWZuypyZbpXc-gs_ok5ha2wvBqwzkmx9mBqEDSvqUEHbW-n7KuVxD21SwuMelTNdXdfqyhXa8HxNCpJRsE21FMmKSM7aNJkNbAO6ULgGrWpUzb30ocvxwO_j6-HyECXbwBqrEo8ZVsPztnKr9K9TgVGeb0IehKMB0HjcFzqHsVAXdyNkaNzUetKPQ9tp4P2ut3UMbhSo97P--u-j58uLp_Lo3vLu6OR8Me4ZFiezpNJYyVjJPpS64AipEnjJpijQhuWFaUxkllDFGDdeGAM1ZrCOuNORGsASiXXSyyG1dM5mC77LKegNlqWpopj6LKCWciFhEgR79oeNm6sJUc8VZIriQIqjjhTIujOKgyFpnK-VmGSXZ_ApZ67P5FYI8_M2b6grylVuuPYDTBXi3Jcz-y8nuH3_ivgFtN5Fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142754595</pqid></control><display><type>article</type><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</creator><creatorcontrib>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</creatorcontrib><description>Background
Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear.
Results
Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone.
Conclusion
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry.
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</description><identifier>ISSN: 1526-498X</identifier><identifier>ISSN: 1526-4998</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.8449</identifier><identifier>PMID: 39329422</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agricultural practices ; Animals ; Aphids - drug effects ; Aphids - genetics ; Aphis gossypii ; Cell proliferation ; Cotton ; Deltamethrin ; DNA biosynthesis ; Fecundity ; Fertility - drug effects ; Homologous recombination ; Hormesis ; hormetic dose response ; Insecticides ; Insecticides - pharmacology ; Integrated pest management ; Life Tables ; Molecular modelling ; Nitriles - pharmacology ; Nitriles - toxicity ; Offspring ; Pest control ; Pests ; Post-transcription ; Pyrethrins - pharmacology ; Reproduction - drug effects ; RNA-Seq ; Rotation ; Side effects ; Signal processing ; Stimulation ; sublethal effects ; Tables (data) ; Transcriptome - drug effects ; Transcriptomes ; Transcriptomics ; transgenerational effects</subject><ispartof>Pest management science, 2025-01, Vol.81 (1), p.477-489</ispartof><rights>2024 Society of Chemical Industry.</rights><rights>2025 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</cites><orcidid>0000-0002-0594-8760 ; 0000-0002-7849-0201 ; 0000-0001-5435-3985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.8449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.8449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39329422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huangfu, Ningbo</creatorcontrib><creatorcontrib>Shang, Jiao</creatorcontrib><creatorcontrib>Guo, Lixiang</creatorcontrib><creatorcontrib>Zhu, Xiangzhen</creatorcontrib><creatorcontrib>Zhang, Kaixin</creatorcontrib><creatorcontrib>Niu, Ruichang</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Gao, Xueke</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Ji, Jichao</creatorcontrib><creatorcontrib>Luo, Junyu</creatorcontrib><creatorcontrib>Cui, Jinjie</creatorcontrib><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>Background
Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear.
Results
Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone.
Conclusion
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry.
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</description><subject>Agricultural practices</subject><subject>Animals</subject><subject>Aphids - drug effects</subject><subject>Aphids - genetics</subject><subject>Aphis gossypii</subject><subject>Cell proliferation</subject><subject>Cotton</subject><subject>Deltamethrin</subject><subject>DNA biosynthesis</subject><subject>Fecundity</subject><subject>Fertility - drug effects</subject><subject>Homologous recombination</subject><subject>Hormesis</subject><subject>hormetic dose response</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Integrated pest management</subject><subject>Life Tables</subject><subject>Molecular modelling</subject><subject>Nitriles - pharmacology</subject><subject>Nitriles - toxicity</subject><subject>Offspring</subject><subject>Pest control</subject><subject>Pests</subject><subject>Post-transcription</subject><subject>Pyrethrins - pharmacology</subject><subject>Reproduction - drug effects</subject><subject>RNA-Seq</subject><subject>Rotation</subject><subject>Side effects</subject><subject>Signal processing</subject><subject>Stimulation</subject><subject>sublethal effects</subject><subject>Tables (data)</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>transgenerational effects</subject><issn>1526-498X</issn><issn>1526-4998</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10dtKAzEQBuAgimd8Awl4oSCtSTbZ3VwW8QRFxQN4tyTZWZuypyZbpXc-gs_ok5ha2wvBqwzkmx9mBqEDSvqUEHbW-n7KuVxD21SwuMelTNdXdfqyhXa8HxNCpJRsE21FMmKSM7aNJkNbAO6ULgGrWpUzb30ocvxwO_j6-HyECXbwBqrEo8ZVsPztnKr9K9TgVGeb0IehKMB0HjcFzqHsVAXdyNkaNzUetKPQ9tp4P2ut3UMbhSo97P--u-j58uLp_Lo3vLu6OR8Me4ZFiezpNJYyVjJPpS64AipEnjJpijQhuWFaUxkllDFGDdeGAM1ZrCOuNORGsASiXXSyyG1dM5mC77LKegNlqWpopj6LKCWciFhEgR79oeNm6sJUc8VZIriQIqjjhTIujOKgyFpnK-VmGSXZ_ApZ67P5FYI8_M2b6grylVuuPYDTBXi3Jcz-y8nuH3_ivgFtN5Fm</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Huangfu, Ningbo</creator><creator>Shang, Jiao</creator><creator>Guo, Lixiang</creator><creator>Zhu, Xiangzhen</creator><creator>Zhang, Kaixin</creator><creator>Niu, Ruichang</creator><creator>Li, Dongyang</creator><creator>Gao, Xueke</creator><creator>Wang, Li</creator><creator>Ji, Jichao</creator><creator>Luo, Junyu</creator><creator>Cui, Jinjie</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0594-8760</orcidid><orcidid>https://orcid.org/0000-0002-7849-0201</orcidid><orcidid>https://orcid.org/0000-0001-5435-3985</orcidid></search><sort><creationdate>202501</creationdate><title>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</title><author>Huangfu, Ningbo ; Shang, Jiao ; Guo, Lixiang ; Zhu, Xiangzhen ; Zhang, Kaixin ; Niu, Ruichang ; Li, Dongyang ; Gao, Xueke ; Wang, Li ; Ji, Jichao ; Luo, Junyu ; Cui, Jinjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2379-b86996a9d89bf4ae155d829cf870dc2bb193712221c4bc0e1d26b34abedc527e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Agricultural practices</topic><topic>Animals</topic><topic>Aphids - drug effects</topic><topic>Aphids - genetics</topic><topic>Aphis gossypii</topic><topic>Cell proliferation</topic><topic>Cotton</topic><topic>Deltamethrin</topic><topic>DNA biosynthesis</topic><topic>Fecundity</topic><topic>Fertility - drug effects</topic><topic>Homologous recombination</topic><topic>Hormesis</topic><topic>hormetic dose response</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Integrated pest management</topic><topic>Life Tables</topic><topic>Molecular modelling</topic><topic>Nitriles - pharmacology</topic><topic>Nitriles - toxicity</topic><topic>Offspring</topic><topic>Pest control</topic><topic>Pests</topic><topic>Post-transcription</topic><topic>Pyrethrins - pharmacology</topic><topic>Reproduction - drug effects</topic><topic>RNA-Seq</topic><topic>Rotation</topic><topic>Side effects</topic><topic>Signal processing</topic><topic>Stimulation</topic><topic>sublethal effects</topic><topic>Tables (data)</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>transgenerational effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huangfu, Ningbo</creatorcontrib><creatorcontrib>Shang, Jiao</creatorcontrib><creatorcontrib>Guo, Lixiang</creatorcontrib><creatorcontrib>Zhu, Xiangzhen</creatorcontrib><creatorcontrib>Zhang, Kaixin</creatorcontrib><creatorcontrib>Niu, Ruichang</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Gao, Xueke</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Ji, Jichao</creatorcontrib><creatorcontrib>Luo, Junyu</creatorcontrib><creatorcontrib>Cui, Jinjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huangfu, Ningbo</au><au>Shang, Jiao</au><au>Guo, Lixiang</au><au>Zhu, Xiangzhen</au><au>Zhang, Kaixin</au><au>Niu, Ruichang</au><au>Li, Dongyang</au><au>Gao, Xueke</au><au>Wang, Li</au><au>Ji, Jichao</au><au>Luo, Junyu</au><au>Cui, Jinjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2025-01</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><spage>477</spage><epage>489</epage><pages>477-489</pages><issn>1526-498X</issn><issn>1526-4998</issn><eissn>1526-4998</eissn><abstract>Background
Deltamethrin, as a highly effective and broad‐spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non‐negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear.
Results
Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non‐homologous end‐joining) were significantly up‐regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin–sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone.
Conclusion
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis‐induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry.
Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the fecundity of offspring. In addition, our study reveals the transcriptional response mechanism of hormesis‐induced fecundity increase.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>39329422</pmid><doi>10.1002/ps.8449</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0594-8760</orcidid><orcidid>https://orcid.org/0000-0002-7849-0201</orcidid><orcidid>https://orcid.org/0000-0001-5435-3985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-498X |
ispartof | Pest management science, 2025-01, Vol.81 (1), p.477-489 |
issn | 1526-498X 1526-4998 1526-4998 |
language | eng |
recordid | cdi_proquest_miscellaneous_3110405653 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Agricultural practices Animals Aphids - drug effects Aphids - genetics Aphis gossypii Cell proliferation Cotton Deltamethrin DNA biosynthesis Fecundity Fertility - drug effects Homologous recombination Hormesis hormetic dose response Insecticides Insecticides - pharmacology Integrated pest management Life Tables Molecular modelling Nitriles - pharmacology Nitriles - toxicity Offspring Pest control Pests Post-transcription Pyrethrins - pharmacology Reproduction - drug effects RNA-Seq Rotation Side effects Signal processing Stimulation sublethal effects Tables (data) Transcriptome - drug effects Transcriptomes Transcriptomics transgenerational effects |
title | Life table analysis and RNA‐Seq reveal hormesis and transgenerational effects of deltamethrin on Aphis gossypii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20table%20analysis%20and%20RNA%E2%80%90Seq%20reveal%20hormesis%20and%20transgenerational%20effects%20of%20deltamethrin%20on%20Aphis%20gossypii&rft.jtitle=Pest%20management%20science&rft.au=Huangfu,%20Ningbo&rft.date=2025-01&rft.volume=81&rft.issue=1&rft.spage=477&rft.epage=489&rft.pages=477-489&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.8449&rft_dat=%3Cproquest_cross%3E3110405653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142754595&rft_id=info:pmid/39329422&rfr_iscdi=true |