Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics

Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal–oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn­(VII)) oxidation for the removal of organic pollutants has been largely neglected. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-10, Vol.58 (40), p.18041-18051
Hauptverfasser: Luo, Mengfan, Zhang, Heng, Guo, Jianhua, Zhao, Jia, Feng, Can, Yin, Jialong, Xu, Chang, Du, Ye, Liu, Yang, He, Chuan-Shu, Lai, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18051
container_issue 40
container_start_page 18041
container_title Environmental science & technology
container_volume 58
creator Luo, Mengfan
Zhang, Heng
Guo, Jianhua
Zhao, Jia
Feng, Can
Yin, Jialong
Xu, Chang
Du, Ye
Liu, Yang
He, Chuan-Shu
Lai, Bo
description Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal–oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn­(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn­(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn­(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn­(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn­(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn­(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH > 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn­(VII) system. These findings not only facilitate the rational design of Mn­(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.
doi_str_mv 10.1021/acs.est.4c06557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3110404245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110404245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-769252f5118284d2eff31e3b6171e53f505ad5c35f28074071d4c417ee4809013</originalsourceid><addsrcrecordid>eNqNkU1LHTEUhkNpqVftursS6KZQ5nrydZPprlg_LiqKWOhuiJkzdWRuoklG9N-b4d66EAquziLP-xxOXkI-M5gz4GzPujTHlOfSwUIp_Y7MmOJQKaPYezIDYKKqxeLPFtlO6RYAuADzkWyJWvCaCzkj9iKGHDx9SPRgQJdj8D_o1Q3SX6Md6GUYkIaOXmIbHqulty73D0jPMJfHZfCJ9p5eYFxZ_9d6m5GeP_atzX0xnvQec-_SLvnQ2SHhp83cIb8PD672j6vT86Pl_s_TynJtcqUXNVe8U4wZbmTLsesEQ3G9YJqhEp0CZVvlhOq4AS1Bs1Y6yTSiNFCXQ3fIt7X3Lob7sXxKs-qTw2GwHsOYGsGUMIKB0W9AGUiQXKqCfn2F3oYx-nLIRClthOaTcG9NuRhSitg1d7Ff2fjUMGimoppSVDOlN0WVxJeNd7xeYfvC_2umAN_XwJR82fk_3TMEu5ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115783727</pqid></control><display><type>article</type><title>Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Luo, Mengfan ; Zhang, Heng ; Guo, Jianhua ; Zhao, Jia ; Feng, Can ; Yin, Jialong ; Xu, Chang ; Du, Ye ; Liu, Yang ; He, Chuan-Shu ; Lai, Bo</creator><creatorcontrib>Luo, Mengfan ; Zhang, Heng ; Guo, Jianhua ; Zhao, Jia ; Feng, Can ; Yin, Jialong ; Xu, Chang ; Du, Ye ; Liu, Yang ; He, Chuan-Shu ; Lai, Bo</creatorcontrib><description>Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal–oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn­(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn­(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn­(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn­(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn­(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn­(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH &gt; 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn­(VII) system. These findings not only facilitate the rational design of Mn­(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c06557</identifier><identifier>PMID: 39329234</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acidic oxides ; Acidity ; Aluminum ; calcium ; Calcium ions ; Chemical synthesis ; Decontamination ; Direct reduction ; Electrochemistry ; Electron transfer ; Electrons ; energy ; environmental science ; Intermediates ; Ions ; Isotope effect ; isotopes ; Kinetics ; Lewis acids ; Magnesium ; Manganese Compounds - chemistry ; Metal ions ; Metals - chemistry ; Microenvironments ; Oxidation ; Oxidation-Reduction ; Oxides - chemistry ; oxygen ; Oxygen transfer ; Phenolic compounds ; Phenols ; Physico-Chemical Treatment and Resource Recovery ; Pollutant removal ; Pollutants ; Protons ; Reaction kinetics ; Substrates ; synthesis ; Thioanisole ; Water purification ; Zinc</subject><ispartof>Environmental science &amp; technology, 2024-10, Vol.58 (40), p.18041-18051</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 8, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a278t-769252f5118284d2eff31e3b6171e53f505ad5c35f28074071d4c417ee4809013</cites><orcidid>0000-0003-1872-7657 ; 0000-0001-8099-0996 ; 0000-0002-7805-0142 ; 0000-0002-7105-1345 ; 0000-0002-1785-7268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c06557$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c06557$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39329234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Mengfan</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Feng, Can</creatorcontrib><creatorcontrib>Yin, Jialong</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Du, Ye</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>He, Chuan-Shu</creatorcontrib><creatorcontrib>Lai, Bo</creatorcontrib><title>Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal–oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn­(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn­(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn­(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn­(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn­(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn­(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH &gt; 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn­(VII) system. These findings not only facilitate the rational design of Mn­(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.</description><subject>Acidic oxides</subject><subject>Acidity</subject><subject>Aluminum</subject><subject>calcium</subject><subject>Calcium ions</subject><subject>Chemical synthesis</subject><subject>Decontamination</subject><subject>Direct reduction</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>energy</subject><subject>environmental science</subject><subject>Intermediates</subject><subject>Ions</subject><subject>Isotope effect</subject><subject>isotopes</subject><subject>Kinetics</subject><subject>Lewis acids</subject><subject>Magnesium</subject><subject>Manganese Compounds - chemistry</subject><subject>Metal ions</subject><subject>Metals - chemistry</subject><subject>Microenvironments</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>oxygen</subject><subject>Oxygen transfer</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Protons</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><subject>synthesis</subject><subject>Thioanisole</subject><subject>Water purification</subject><subject>Zinc</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LHTEUhkNpqVftursS6KZQ5nrydZPprlg_LiqKWOhuiJkzdWRuoklG9N-b4d66EAquziLP-xxOXkI-M5gz4GzPujTHlOfSwUIp_Y7MmOJQKaPYezIDYKKqxeLPFtlO6RYAuADzkWyJWvCaCzkj9iKGHDx9SPRgQJdj8D_o1Q3SX6Md6GUYkIaOXmIbHqulty73D0jPMJfHZfCJ9p5eYFxZ_9d6m5GeP_atzX0xnvQec-_SLvnQ2SHhp83cIb8PD672j6vT86Pl_s_TynJtcqUXNVe8U4wZbmTLsesEQ3G9YJqhEp0CZVvlhOq4AS1Bs1Y6yTSiNFCXQ3fIt7X3Lob7sXxKs-qTw2GwHsOYGsGUMIKB0W9AGUiQXKqCfn2F3oYx-nLIRClthOaTcG9NuRhSitg1d7Ff2fjUMGimoppSVDOlN0WVxJeNd7xeYfvC_2umAN_XwJR82fk_3TMEu5ss</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Luo, Mengfan</creator><creator>Zhang, Heng</creator><creator>Guo, Jianhua</creator><creator>Zhao, Jia</creator><creator>Feng, Can</creator><creator>Yin, Jialong</creator><creator>Xu, Chang</creator><creator>Du, Ye</creator><creator>Liu, Yang</creator><creator>He, Chuan-Shu</creator><creator>Lai, Bo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1872-7657</orcidid><orcidid>https://orcid.org/0000-0001-8099-0996</orcidid><orcidid>https://orcid.org/0000-0002-7805-0142</orcidid><orcidid>https://orcid.org/0000-0002-7105-1345</orcidid><orcidid>https://orcid.org/0000-0002-1785-7268</orcidid></search><sort><creationdate>20241008</creationdate><title>Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics</title><author>Luo, Mengfan ; Zhang, Heng ; Guo, Jianhua ; Zhao, Jia ; Feng, Can ; Yin, Jialong ; Xu, Chang ; Du, Ye ; Liu, Yang ; He, Chuan-Shu ; Lai, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-769252f5118284d2eff31e3b6171e53f505ad5c35f28074071d4c417ee4809013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Acidity</topic><topic>Aluminum</topic><topic>calcium</topic><topic>Calcium ions</topic><topic>Chemical synthesis</topic><topic>Decontamination</topic><topic>Direct reduction</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>energy</topic><topic>environmental science</topic><topic>Intermediates</topic><topic>Ions</topic><topic>Isotope effect</topic><topic>isotopes</topic><topic>Kinetics</topic><topic>Lewis acids</topic><topic>Magnesium</topic><topic>Manganese Compounds - chemistry</topic><topic>Metal ions</topic><topic>Metals - chemistry</topic><topic>Microenvironments</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>oxygen</topic><topic>Oxygen transfer</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Protons</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><topic>synthesis</topic><topic>Thioanisole</topic><topic>Water purification</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Mengfan</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><creatorcontrib>Zhao, Jia</creatorcontrib><creatorcontrib>Feng, Can</creatorcontrib><creatorcontrib>Yin, Jialong</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Du, Ye</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>He, Chuan-Shu</creatorcontrib><creatorcontrib>Lai, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Mengfan</au><au>Zhang, Heng</au><au>Guo, Jianhua</au><au>Zhao, Jia</au><au>Feng, Can</au><au>Yin, Jialong</au><au>Xu, Chang</au><au>Du, Ye</au><au>Liu, Yang</au><au>He, Chuan-Shu</au><au>Lai, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-10-08</date><risdate>2024</risdate><volume>58</volume><issue>40</issue><spage>18041</spage><epage>18051</epage><pages>18041-18051</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal–oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn­(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn­(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn­(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn­(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn­(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn­(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH &gt; 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn­(VII) system. These findings not only facilitate the rational design of Mn­(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39329234</pmid><doi>10.1021/acs.est.4c06557</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1872-7657</orcidid><orcidid>https://orcid.org/0000-0001-8099-0996</orcidid><orcidid>https://orcid.org/0000-0002-7805-0142</orcidid><orcidid>https://orcid.org/0000-0002-7105-1345</orcidid><orcidid>https://orcid.org/0000-0002-1785-7268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-10, Vol.58 (40), p.18041-18051
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3110404245
source MEDLINE; American Chemical Society Journals
subjects Acidic oxides
Acidity
Aluminum
calcium
Calcium ions
Chemical synthesis
Decontamination
Direct reduction
Electrochemistry
Electron transfer
Electrons
energy
environmental science
Intermediates
Ions
Isotope effect
isotopes
Kinetics
Lewis acids
Magnesium
Manganese Compounds - chemistry
Metal ions
Metals - chemistry
Microenvironments
Oxidation
Oxidation-Reduction
Oxides - chemistry
oxygen
Oxygen transfer
Phenolic compounds
Phenols
Physico-Chemical Treatment and Resource Recovery
Pollutant removal
Pollutants
Protons
Reaction kinetics
Substrates
synthesis
Thioanisole
Water purification
Zinc
title Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20vs%20Electron:%20The%20Dual%20Role%20of%20Redox-Inactive%20Metal%20Ions%20in%20Permanganate%20Oxidation%20Kinetics&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Luo,%20Mengfan&rft.date=2024-10-08&rft.volume=58&rft.issue=40&rft.spage=18041&rft.epage=18051&rft.pages=18041-18051&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c06557&rft_dat=%3Cproquest_cross%3E3110404245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115783727&rft_id=info:pmid/39329234&rfr_iscdi=true