Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry

Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2025-01, Vol.337 (Pt 2), p.118836, Article 118836
Hauptverfasser: Mao, Jiale, Lei, Houxing, Xu, Pingcui, Liu, Shuang, Zhou, Jiwang, Mei, Mingrong, Wang, Nani, Zhang, Xiaoqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 2
container_start_page 118836
container_title Journal of ethnopharmacology
container_volume 337
creator Mao, Jiale
Lei, Houxing
Xu, Pingcui
Liu, Shuang
Zhou, Jiwang
Mei, Mingrong
Wang, Nani
Zhang, Xiaoqin
description Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development. [Display omitted] •Established TNF-α Induced osteoblast injury model and osteoblast membrane chromatographic screening system.•A total of 32 chemical constituents of Melastoma dodecandrum which act directly on osteoblasts were found.•Identified isovitexin as an active component of Melastoma dodecandrum with the ability to ameliorate TNF-α mediated osteoblast injury.
doi_str_mv 10.1016/j.jep.2024.118836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3110400901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378874124011358</els_id><sourcerecordid>3110400901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-87e0edcf085ad3314dc9bdc77760aeb5e6c0e669ef45c8f1487c21d827e06da03</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EotvCA3BBPnLJYsdJ7BUnVFGoVOBSzpZjT3YdYjvYDlKeiRMvwjPhaFuOnCzNfP_vmfkRekXJnhLavR33I8z7mtTNnlIhWPcE7ajgdcVbzp6iHWFcVII39AJdpjQSQjhtyHN0wQ6s7gStd-jXrQGf7bBaf8TfYcU6uDn4Ukt4iMHhzzCplINT2AQDWnkTF4etx_dfbqo_vyvrzaLB4JAyhH5jS3Nc4opd4SecTzEsxxNWm3Nvvco2eBwGrGGasAPXR-UB64I5lcMxqvm04vINdiolnGbQubQgx_UFejaoKcHLh_cKfbv5cH_9qbr7-vH2-v1dpWvW5rIwEDB6IKJVhjHaGH3ojeacd0RB30KnCXTdAYam1WKgjeC6pkbURdcZRdgVenP2nWP4sUDK0tm0jVsGDUuSjFLSEHIgtKD0jOoYUoowyDlap-IqKZFbRnKUJSO5ZSTPGRXN6wf7pXdg_ikeQynAuzMAZcmfFqJM2oIvV7axXEOaYP9j_xcSAqek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110400901</pqid></control><display><type>article</type><title>Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mao, Jiale ; Lei, Houxing ; Xu, Pingcui ; Liu, Shuang ; Zhou, Jiwang ; Mei, Mingrong ; Wang, Nani ; Zhang, Xiaoqin</creator><creatorcontrib>Mao, Jiale ; Lei, Houxing ; Xu, Pingcui ; Liu, Shuang ; Zhou, Jiwang ; Mei, Mingrong ; Wang, Nani ; Zhang, Xiaoqin</creatorcontrib><description>Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development. [Display omitted] •Established TNF-α Induced osteoblast injury model and osteoblast membrane chromatographic screening system.•A total of 32 chemical constituents of Melastoma dodecandrum which act directly on osteoblasts were found.•Identified isovitexin as an active component of Melastoma dodecandrum with the ability to ameliorate TNF-α mediated osteoblast injury.</description><identifier>ISSN: 0378-8741</identifier><identifier>ISSN: 1872-7573</identifier><identifier>EISSN: 1872-7573</identifier><identifier>DOI: 10.1016/j.jep.2024.118836</identifier><identifier>PMID: 39326812</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell membrane chromatography ; Cell Survival - drug effects ; Chromatography - methods ; Isovitexin ; Key component ; Mass Spectrometry - methods ; Melastoma dodecandrum ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Plant Extracts - chemistry ; Plant Extracts - pharmacology ; Rats ; Receptors, Tumor Necrosis Factor, Type I - metabolism ; TNF-α ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Journal of ethnopharmacology, 2025-01, Vol.337 (Pt 2), p.118836, Article 118836</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-87e0edcf085ad3314dc9bdc77760aeb5e6c0e669ef45c8f1487c21d827e06da03</cites><orcidid>0000-0002-7660-640X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jep.2024.118836$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39326812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Jiale</creatorcontrib><creatorcontrib>Lei, Houxing</creatorcontrib><creatorcontrib>Xu, Pingcui</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Jiwang</creatorcontrib><creatorcontrib>Mei, Mingrong</creatorcontrib><creatorcontrib>Wang, Nani</creatorcontrib><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><title>Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry</title><title>Journal of ethnopharmacology</title><addtitle>J Ethnopharmacol</addtitle><description>Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development. [Display omitted] •Established TNF-α Induced osteoblast injury model and osteoblast membrane chromatographic screening system.•A total of 32 chemical constituents of Melastoma dodecandrum which act directly on osteoblasts were found.•Identified isovitexin as an active component of Melastoma dodecandrum with the ability to ameliorate TNF-α mediated osteoblast injury.</description><subject>Animals</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membrane chromatography</subject><subject>Cell Survival - drug effects</subject><subject>Chromatography - methods</subject><subject>Isovitexin</subject><subject>Key component</subject><subject>Mass Spectrometry - methods</subject><subject>Melastoma dodecandrum</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - pharmacology</subject><subject>Rats</subject><subject>Receptors, Tumor Necrosis Factor, Type I - metabolism</subject><subject>TNF-α</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>0378-8741</issn><issn>1872-7573</issn><issn>1872-7573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EotvCA3BBPnLJYsdJ7BUnVFGoVOBSzpZjT3YdYjvYDlKeiRMvwjPhaFuOnCzNfP_vmfkRekXJnhLavR33I8z7mtTNnlIhWPcE7ajgdcVbzp6iHWFcVII39AJdpjQSQjhtyHN0wQ6s7gStd-jXrQGf7bBaf8TfYcU6uDn4Ukt4iMHhzzCplINT2AQDWnkTF4etx_dfbqo_vyvrzaLB4JAyhH5jS3Nc4opd4SecTzEsxxNWm3Nvvco2eBwGrGGasAPXR-UB64I5lcMxqvm04vINdiolnGbQubQgx_UFejaoKcHLh_cKfbv5cH_9qbr7-vH2-v1dpWvW5rIwEDB6IKJVhjHaGH3ojeacd0RB30KnCXTdAYam1WKgjeC6pkbURdcZRdgVenP2nWP4sUDK0tm0jVsGDUuSjFLSEHIgtKD0jOoYUoowyDlap-IqKZFbRnKUJSO5ZSTPGRXN6wf7pXdg_ikeQynAuzMAZcmfFqJM2oIvV7axXEOaYP9j_xcSAqek</recordid><startdate>20250130</startdate><enddate>20250130</enddate><creator>Mao, Jiale</creator><creator>Lei, Houxing</creator><creator>Xu, Pingcui</creator><creator>Liu, Shuang</creator><creator>Zhou, Jiwang</creator><creator>Mei, Mingrong</creator><creator>Wang, Nani</creator><creator>Zhang, Xiaoqin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7660-640X</orcidid></search><sort><creationdate>20250130</creationdate><title>Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry</title><author>Mao, Jiale ; Lei, Houxing ; Xu, Pingcui ; Liu, Shuang ; Zhou, Jiwang ; Mei, Mingrong ; Wang, Nani ; Zhang, Xiaoqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-87e0edcf085ad3314dc9bdc77760aeb5e6c0e669ef45c8f1487c21d827e06da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membrane chromatography</topic><topic>Cell Survival - drug effects</topic><topic>Chromatography - methods</topic><topic>Isovitexin</topic><topic>Key component</topic><topic>Mass Spectrometry - methods</topic><topic>Melastoma dodecandrum</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - pharmacology</topic><topic>Rats</topic><topic>Receptors, Tumor Necrosis Factor, Type I - metabolism</topic><topic>TNF-α</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Jiale</creatorcontrib><creatorcontrib>Lei, Houxing</creatorcontrib><creatorcontrib>Xu, Pingcui</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Jiwang</creatorcontrib><creatorcontrib>Mei, Mingrong</creatorcontrib><creatorcontrib>Wang, Nani</creatorcontrib><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of ethnopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Jiale</au><au>Lei, Houxing</au><au>Xu, Pingcui</au><au>Liu, Shuang</au><au>Zhou, Jiwang</au><au>Mei, Mingrong</au><au>Wang, Nani</au><au>Zhang, Xiaoqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry</atitle><jtitle>Journal of ethnopharmacology</jtitle><addtitle>J Ethnopharmacol</addtitle><date>2025-01-30</date><risdate>2025</risdate><volume>337</volume><issue>Pt 2</issue><spage>118836</spage><pages>118836-</pages><artnum>118836</artnum><issn>0378-8741</issn><issn>1872-7573</issn><eissn>1872-7573</eissn><abstract>Melastoma dodecandrum (MD), a traditional ethnomedicine, has been widely used for the treatment of fractures, osteoarthritis, and osteoporosis due to its remarkable anti-inflammatory activity. However, the specific active components responsible for its therapeutic effects on orthopedic conditions remain unidentified. This study aimed to screen and identify key active components in MD using a combination of cell membrane chromatography and mass spectrometry, followed by cellular validation. A TNF-α-induced osteoblast injury model and an osteoblast membrane chromatography screening system were established to select and identify chemical components of MD that directly act on osteoblasts. The protective effects of MD on osteoblasts were assessed by evaluating cell viability, alkaline phosphatase (ALP) activity, cell mineralization and the expression of osteogenesis-related proteins OCN, RUNX2, and the TNF-α receptor protein TNFR1. Validation of the activity of individual components was also conducted. MD significantly improved the viability of osteoblasts under TNF-α-induced injury, enhanced ALP activity, stimulated the expression of OCN and RUNX2 proteins, and decreased the expression of TNFR1. Cell membrane chromatography screening identified 32 chemical components, including 21 flavonoids, 6 organic acids, 2 phenylpropanoids, 2 terpenes, and 1 nucleotide. Molecular docking revealed that isovitexin could bind to the specific receptor TNFR1 on the cell membrane. Furthermore, cellular validation demonstrated that isovitexin significantly protected osteoblasts. MD and its pharmacologically active component, isovitexin, exhibit protective effects against TNF-α-induced inflammatory injury in osteoblasts, laying a solid foundation for future drug development. [Display omitted] •Established TNF-α Induced osteoblast injury model and osteoblast membrane chromatographic screening system.•A total of 32 chemical constituents of Melastoma dodecandrum which act directly on osteoblasts were found.•Identified isovitexin as an active component of Melastoma dodecandrum with the ability to ameliorate TNF-α mediated osteoblast injury.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39326812</pmid><doi>10.1016/j.jep.2024.118836</doi><orcidid>https://orcid.org/0000-0002-7660-640X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-8741
ispartof Journal of ethnopharmacology, 2025-01, Vol.337 (Pt 2), p.118836, Article 118836
issn 0378-8741
1872-7573
1872-7573
language eng
recordid cdi_proquest_miscellaneous_3110400901
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell membrane chromatography
Cell Survival - drug effects
Chromatography - methods
Isovitexin
Key component
Mass Spectrometry - methods
Melastoma dodecandrum
Osteoblasts - drug effects
Osteoblasts - metabolism
Plant Extracts - chemistry
Plant Extracts - pharmacology
Rats
Receptors, Tumor Necrosis Factor, Type I - metabolism
TNF-α
Tumor Necrosis Factor-alpha - metabolism
title Identifying key components from Melastoma dodecandrum in TNF-α-induced osteoblast injury model through a combination of cell membrane chromatography and mass spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20key%20components%20from%20Melastoma%20dodecandrum%20in%20TNF-%CE%B1-induced%20osteoblast%20injury%20model%20through%20a%20combination%20of%20cell%20membrane%20chromatography%20and%20mass%20spectrometry&rft.jtitle=Journal%20of%20ethnopharmacology&rft.au=Mao,%20Jiale&rft.date=2025-01-30&rft.volume=337&rft.issue=Pt%202&rft.spage=118836&rft.pages=118836-&rft.artnum=118836&rft.issn=0378-8741&rft.eissn=1872-7573&rft_id=info:doi/10.1016/j.jep.2024.118836&rft_dat=%3Cproquest_cross%3E3110400901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110400901&rft_id=info:pmid/39326812&rft_els_id=S0378874124011358&rfr_iscdi=true