Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy

Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.280 (Pt 4), p.135971, Article 135971
Hauptverfasser: Gollapudi, Kranthi Kumar, Dutta, Sayan Deb, Adnan, Md, Taylor, Mitchell Lee, Reddy, K.V.N. Suresh, Alle, Madhusudhan, Huang, Xiaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 4
container_start_page 135971
container_title International journal of biological macromolecules
container_volume 280
creator Gollapudi, Kranthi Kumar
Dutta, Sayan Deb
Adnan, Md
Taylor, Mitchell Lee
Reddy, K.V.N. Suresh
Alle, Madhusudhan
Huang, Xiaohua
description Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.
doi_str_mv 10.1016/j.ijbiomac.2024.135971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109974227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024067801</els_id><sourcerecordid>3154171479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-a58a18c0ca1bb1b4e4a688f13e973f6c0e39f37410b37b9c621adc849c7a835d3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhL1Q5csnWEyexfQMVaJEqcYGzZTsTOivno3ZSKT3x0_GyLVc4WRo977zyPIxdAN8Dh_bysKeDo2mwfl_xqt6DaLSEF2wHSuqScy5esh2HGkoFgp-xNykd8rRtQL1mZ0KLqgIJO_brE9nQ4d3WYeExhDVMCYvRjlNPLlJIl_MUtvvVLhhHWociLdZRoEfsijUs0ZY9jVgkCg8Y_-RmGxfyAVPRT7FI24jxJ6U8Kuy4kLM-b8qdxXKH0c7bW_aqtyHhu6f3nP348vn71U15--3669XH29JXUi2lbZQF5bm34By4GmvbKtWDQC1F33qOQvdC1sCdkE77tgLbeVVrL60STSfO2fvT3jlO9yumxQyUjj-2I05rMgKaOl-klvo_UK61rKtKZrQ9oT5OKUXszRxpsHEzwM1RlDmYZ1HmKMqcROXgxVPH6gbs_saezWTgwwnAfJQHwmiSJxw9dhTRL6ab6F8dvwESqquN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109974227</pqid></control><display><type>article</type><title>Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gollapudi, Kranthi Kumar ; Dutta, Sayan Deb ; Adnan, Md ; Taylor, Mitchell Lee ; Reddy, K.V.N. Suresh ; Alle, Madhusudhan ; Huang, Xiaohua</creator><creatorcontrib>Gollapudi, Kranthi Kumar ; Dutta, Sayan Deb ; Adnan, Md ; Taylor, Mitchell Lee ; Reddy, K.V.N. Suresh ; Alle, Madhusudhan ; Huang, Xiaohua</creatorcontrib><description>Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.135971</identifier><identifier>PMID: 39322171</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>ambient temperature ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; biocompatibility ; Biocompatible film ; biofilm ; Biofilms - drug effects ; cellulose ; Cellulose - analogs &amp; derivatives ; Cellulose - chemistry ; Cellulose - pharmacology ; cellulose nanofibers ; Dialdehyde cellulose nanofibrils ; Drug Synergism ; Escherichia coli ; Escherichia coli - drug effects ; fibroblasts ; filtration ; Humans ; Metal Nanoparticles - chemistry ; Microbial Sensitivity Tests ; nanocomposites ; Nanocomposites - chemistry ; Nanofibers - chemistry ; nanosilver ; polyethylene glycol ; Polyquaternium-10 ; quaternary ammonium compounds ; silver ; Silver - chemistry ; Silver - pharmacology ; skin (animal) ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; therapeutics</subject><ispartof>International journal of biological macromolecules, 2024-11, Vol.280 (Pt 4), p.135971, Article 135971</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-a58a18c0ca1bb1b4e4a688f13e973f6c0e39f37410b37b9c621adc849c7a835d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.135971$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39322171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gollapudi, Kranthi Kumar</creatorcontrib><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Adnan, Md</creatorcontrib><creatorcontrib>Taylor, Mitchell Lee</creatorcontrib><creatorcontrib>Reddy, K.V.N. Suresh</creatorcontrib><creatorcontrib>Alle, Madhusudhan</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><title>Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.</description><subject>ambient temperature</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>biocompatibility</subject><subject>Biocompatible film</subject><subject>biofilm</subject><subject>Biofilms - drug effects</subject><subject>cellulose</subject><subject>Cellulose - analogs &amp; derivatives</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - pharmacology</subject><subject>cellulose nanofibers</subject><subject>Dialdehyde cellulose nanofibrils</subject><subject>Drug Synergism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>fibroblasts</subject><subject>filtration</subject><subject>Humans</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microbial Sensitivity Tests</subject><subject>nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanofibers - chemistry</subject><subject>nanosilver</subject><subject>polyethylene glycol</subject><subject>Polyquaternium-10</subject><subject>quaternary ammonium compounds</subject><subject>silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>skin (animal)</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>therapeutics</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhL1Q5csnWEyexfQMVaJEqcYGzZTsTOivno3ZSKT3x0_GyLVc4WRo977zyPIxdAN8Dh_bysKeDo2mwfl_xqt6DaLSEF2wHSuqScy5esh2HGkoFgp-xNykd8rRtQL1mZ0KLqgIJO_brE9nQ4d3WYeExhDVMCYvRjlNPLlJIl_MUtvvVLhhHWociLdZRoEfsijUs0ZY9jVgkCg8Y_-RmGxfyAVPRT7FI24jxJ6U8Kuy4kLM-b8qdxXKH0c7bW_aqtyHhu6f3nP348vn71U15--3669XH29JXUi2lbZQF5bm34By4GmvbKtWDQC1F33qOQvdC1sCdkE77tgLbeVVrL60STSfO2fvT3jlO9yumxQyUjj-2I05rMgKaOl-klvo_UK61rKtKZrQ9oT5OKUXszRxpsHEzwM1RlDmYZ1HmKMqcROXgxVPH6gbs_saezWTgwwnAfJQHwmiSJxw9dhTRL6ab6F8dvwESqquN</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Gollapudi, Kranthi Kumar</creator><creator>Dutta, Sayan Deb</creator><creator>Adnan, Md</creator><creator>Taylor, Mitchell Lee</creator><creator>Reddy, K.V.N. Suresh</creator><creator>Alle, Madhusudhan</creator><creator>Huang, Xiaohua</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202411</creationdate><title>Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy</title><author>Gollapudi, Kranthi Kumar ; Dutta, Sayan Deb ; Adnan, Md ; Taylor, Mitchell Lee ; Reddy, K.V.N. Suresh ; Alle, Madhusudhan ; Huang, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-a58a18c0ca1bb1b4e4a688f13e973f6c0e39f37410b37b9c621adc849c7a835d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>biocompatibility</topic><topic>Biocompatible film</topic><topic>biofilm</topic><topic>Biofilms - drug effects</topic><topic>cellulose</topic><topic>Cellulose - analogs &amp; derivatives</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - pharmacology</topic><topic>cellulose nanofibers</topic><topic>Dialdehyde cellulose nanofibrils</topic><topic>Drug Synergism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>fibroblasts</topic><topic>filtration</topic><topic>Humans</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microbial Sensitivity Tests</topic><topic>nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanofibers - chemistry</topic><topic>nanosilver</topic><topic>polyethylene glycol</topic><topic>Polyquaternium-10</topic><topic>quaternary ammonium compounds</topic><topic>silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>skin (animal)</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gollapudi, Kranthi Kumar</creatorcontrib><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Adnan, Md</creatorcontrib><creatorcontrib>Taylor, Mitchell Lee</creatorcontrib><creatorcontrib>Reddy, K.V.N. Suresh</creatorcontrib><creatorcontrib>Alle, Madhusudhan</creatorcontrib><creatorcontrib>Huang, Xiaohua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gollapudi, Kranthi Kumar</au><au>Dutta, Sayan Deb</au><au>Adnan, Md</au><au>Taylor, Mitchell Lee</au><au>Reddy, K.V.N. Suresh</au><au>Alle, Madhusudhan</au><au>Huang, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>280</volume><issue>Pt 4</issue><spage>135971</spage><pages>135971-</pages><artnum>135971</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39322171</pmid><doi>10.1016/j.ijbiomac.2024.135971</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-11, Vol.280 (Pt 4), p.135971, Article 135971
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3109974227
source MEDLINE; Elsevier ScienceDirect Journals
subjects ambient temperature
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
biocompatibility
Biocompatible film
biofilm
Biofilms - drug effects
cellulose
Cellulose - analogs & derivatives
Cellulose - chemistry
Cellulose - pharmacology
cellulose nanofibers
Dialdehyde cellulose nanofibrils
Drug Synergism
Escherichia coli
Escherichia coli - drug effects
fibroblasts
filtration
Humans
Metal Nanoparticles - chemistry
Microbial Sensitivity Tests
nanocomposites
Nanocomposites - chemistry
Nanofibers - chemistry
nanosilver
polyethylene glycol
Polyquaternium-10
quaternary ammonium compounds
silver
Silver - chemistry
Silver - pharmacology
skin (animal)
Staphylococcus aureus
Staphylococcus aureus - drug effects
therapeutics
title Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dialdehyde%20cellulose%20nanofibrils/polyquaternium%20stabilized%20ultra-fine%20silver%20nanoparticles%20for%20synergistic%20antibacterial%20therapy&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Gollapudi,%20Kranthi%20Kumar&rft.date=2024-11&rft.volume=280&rft.issue=Pt%204&rft.spage=135971&rft.pages=135971-&rft.artnum=135971&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.135971&rft_dat=%3Cproquest_cross%3E3154171479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109974227&rft_id=info:pmid/39322171&rft_els_id=S0141813024067801&rfr_iscdi=true