Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks

ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a
Hauptverfasser: Ramanathan, Rahul, Borum, Andy, Rooney, David M., Rabbany, Sina Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e12886
container_title Microcirculation (New York, N.Y. 1994)
container_volume 31
creator Ramanathan, Rahul
Borum, Andy
Rooney, David M.
Rabbany, Sina Y.
description ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds. Mathematical Framework Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds. Results A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system. Conclusion In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.
doi_str_mv 10.1111/micc.12886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109972853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109972853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0E4lJYeAAUiQUhArEdJ_YI5VIkCguwRo59DIYkLnYj1I1H4Bl5ElwKDAyc5Vz06ZPOj9A2zg5xrKPWKnWICefFElrHLBcpL7FYjnNW0lQUnK-hjRCesizjnIhVtEYFJZiwYh2psdPQ2O4hGUHr9KyT0RYS2yW3jx7g4-391LbQBes62RwkJ9a1cZ9aFWcvO_UI-iAZW-WdaXqr5_d7GVTfSJ9cw_TV-eewiVaMbAJsffcBujs_ux2O0qubi8vh8VWqSF4UKdNGU21AmZKynGLNdZ3znIu8lrkyhlHNwNS6EAwDZ4oxY0wJXBGDWZ0BHaC9hXfi3UsPYVq1NihoGtmB60NFcSZESTijEd39gz653scX5xQpCowZYZHaX1DxvRA8mGribSv9rMJZNY--mkdffUUf4Z1vZV-3oH_Rn6wjgBfAq21g9o-qGl8OhwvpJ2arkCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126611525</pqid></control><display><type>article</type><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</creator><creatorcontrib>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</creatorcontrib><description>ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds. Mathematical Framework Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds. Results A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system. Conclusion In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</description><identifier>ISSN: 1073-9688</identifier><identifier>ISSN: 1549-8719</identifier><identifier>EISSN: 1549-8719</identifier><identifier>DOI: 10.1111/micc.12886</identifier><identifier>PMID: 39321256</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomimetics - methods ; capillary network ; computational modeling ; Endothelial Cells - physiology ; Hemodynamics ; Hemodynamics - physiology ; Humans ; Microcirculation - physiology ; Microfluidics - methods ; Models, Cardiovascular ; Neovascularization, Physiologic ; Physiology ; retinal microcirculation ; Retinal Vessels - physiology ; vascular biology</subject><ispartof>Microcirculation (New York, N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</cites><orcidid>0000-0002-3105-0647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmicc.12886$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmicc.12886$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39321256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramanathan, Rahul</creatorcontrib><creatorcontrib>Borum, Andy</creatorcontrib><creatorcontrib>Rooney, David M.</creatorcontrib><creatorcontrib>Rabbany, Sina Y.</creatorcontrib><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><title>Microcirculation (New York, N.Y. 1994)</title><addtitle>Microcirculation</addtitle><description>ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds. Mathematical Framework Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds. Results A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system. Conclusion In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</description><subject>Animals</subject><subject>Biomimetics - methods</subject><subject>capillary network</subject><subject>computational modeling</subject><subject>Endothelial Cells - physiology</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Microcirculation - physiology</subject><subject>Microfluidics - methods</subject><subject>Models, Cardiovascular</subject><subject>Neovascularization, Physiologic</subject><subject>Physiology</subject><subject>retinal microcirculation</subject><subject>Retinal Vessels - physiology</subject><subject>vascular biology</subject><issn>1073-9688</issn><issn>1549-8719</issn><issn>1549-8719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0E4lJYeAAUiQUhArEdJ_YI5VIkCguwRo59DIYkLnYj1I1H4Bl5ElwKDAyc5Vz06ZPOj9A2zg5xrKPWKnWICefFElrHLBcpL7FYjnNW0lQUnK-hjRCesizjnIhVtEYFJZiwYh2psdPQ2O4hGUHr9KyT0RYS2yW3jx7g4-391LbQBes62RwkJ9a1cZ9aFWcvO_UI-iAZW-WdaXqr5_d7GVTfSJ9cw_TV-eewiVaMbAJsffcBujs_ux2O0qubi8vh8VWqSF4UKdNGU21AmZKynGLNdZ3znIu8lrkyhlHNwNS6EAwDZ4oxY0wJXBGDWZ0BHaC9hXfi3UsPYVq1NihoGtmB60NFcSZESTijEd39gz653scX5xQpCowZYZHaX1DxvRA8mGribSv9rMJZNY--mkdffUUf4Z1vZV-3oH_Rn6wjgBfAq21g9o-qGl8OhwvpJ2arkCQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ramanathan, Rahul</creator><creator>Borum, Andy</creator><creator>Rooney, David M.</creator><creator>Rabbany, Sina Y.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3105-0647</orcidid></search><sort><creationdate>202411</creationdate><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><author>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biomimetics - methods</topic><topic>capillary network</topic><topic>computational modeling</topic><topic>Endothelial Cells - physiology</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Microcirculation - physiology</topic><topic>Microfluidics - methods</topic><topic>Models, Cardiovascular</topic><topic>Neovascularization, Physiologic</topic><topic>Physiology</topic><topic>retinal microcirculation</topic><topic>Retinal Vessels - physiology</topic><topic>vascular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanathan, Rahul</creatorcontrib><creatorcontrib>Borum, Andy</creatorcontrib><creatorcontrib>Rooney, David M.</creatorcontrib><creatorcontrib>Rabbany, Sina Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanathan, Rahul</au><au>Borum, Andy</au><au>Rooney, David M.</au><au>Rabbany, Sina Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</atitle><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle><addtitle>Microcirculation</addtitle><date>2024-11</date><risdate>2024</risdate><volume>31</volume><issue>8</issue><spage>e12886</spage><epage>n/a</epage><pages>e12886-n/a</pages><issn>1073-9688</issn><issn>1549-8719</issn><eissn>1549-8719</eissn><abstract>ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds. Mathematical Framework Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds. Results A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system. Conclusion In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39321256</pmid><doi>10.1111/micc.12886</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3105-0647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1073-9688
ispartof Microcirculation (New York, N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a
issn 1073-9688
1549-8719
1549-8719
language eng
recordid cdi_proquest_miscellaneous_3109972853
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Animals
Biomimetics - methods
capillary network
computational modeling
Endothelial Cells - physiology
Hemodynamics
Hemodynamics - physiology
Humans
Microcirculation - physiology
Microfluidics - methods
Models, Cardiovascular
Neovascularization, Physiologic
Physiology
retinal microcirculation
Retinal Vessels - physiology
vascular biology
title Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Hemodynamics%20in%20Three%E2%80%90Dimensional,%20Biomimetic,%20Branched,%20Microfluidic,%20Vascular%20Networks&rft.jtitle=Microcirculation%20(New%20York,%20N.Y.%201994)&rft.au=Ramanathan,%20Rahul&rft.date=2024-11&rft.volume=31&rft.issue=8&rft.spage=e12886&rft.epage=n/a&rft.pages=e12886-n/a&rft.issn=1073-9688&rft.eissn=1549-8719&rft_id=info:doi/10.1111/micc.12886&rft_dat=%3Cproquest_cross%3E3109972853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126611525&rft_id=info:pmid/39321256&rfr_iscdi=true