Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks
ABSTRACT Objective Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tis...
Gespeichert in:
Veröffentlicht in: | Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e12886 |
container_title | Microcirculation (New York, N.Y. 1994) |
container_volume | 31 |
creator | Ramanathan, Rahul Borum, Andy Rooney, David M. Rabbany, Sina Y. |
description | ABSTRACT
Objective
Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds.
Mathematical Framework
Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds.
Results
A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system.
Conclusion
In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization. |
doi_str_mv | 10.1111/micc.12886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109972853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109972853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0E4lJYeAAUiQUhArEdJ_YI5VIkCguwRo59DIYkLnYj1I1H4Bl5ElwKDAyc5Vz06ZPOj9A2zg5xrKPWKnWICefFElrHLBcpL7FYjnNW0lQUnK-hjRCesizjnIhVtEYFJZiwYh2psdPQ2O4hGUHr9KyT0RYS2yW3jx7g4-391LbQBes62RwkJ9a1cZ9aFWcvO_UI-iAZW-WdaXqr5_d7GVTfSJ9cw_TV-eewiVaMbAJsffcBujs_ux2O0qubi8vh8VWqSF4UKdNGU21AmZKynGLNdZ3znIu8lrkyhlHNwNS6EAwDZ4oxY0wJXBGDWZ0BHaC9hXfi3UsPYVq1NihoGtmB60NFcSZESTijEd39gz653scX5xQpCowZYZHaX1DxvRA8mGribSv9rMJZNY--mkdffUUf4Z1vZV-3oH_Rn6wjgBfAq21g9o-qGl8OhwvpJ2arkCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126611525</pqid></control><display><type>article</type><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</creator><creatorcontrib>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</creatorcontrib><description>ABSTRACT
Objective
Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds.
Mathematical Framework
Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds.
Results
A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system.
Conclusion
In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</description><identifier>ISSN: 1073-9688</identifier><identifier>ISSN: 1549-8719</identifier><identifier>EISSN: 1549-8719</identifier><identifier>DOI: 10.1111/micc.12886</identifier><identifier>PMID: 39321256</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomimetics - methods ; capillary network ; computational modeling ; Endothelial Cells - physiology ; Hemodynamics ; Hemodynamics - physiology ; Humans ; Microcirculation - physiology ; Microfluidics - methods ; Models, Cardiovascular ; Neovascularization, Physiologic ; Physiology ; retinal microcirculation ; Retinal Vessels - physiology ; vascular biology</subject><ispartof>Microcirculation (New York, N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</cites><orcidid>0000-0002-3105-0647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmicc.12886$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmicc.12886$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39321256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramanathan, Rahul</creatorcontrib><creatorcontrib>Borum, Andy</creatorcontrib><creatorcontrib>Rooney, David M.</creatorcontrib><creatorcontrib>Rabbany, Sina Y.</creatorcontrib><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><title>Microcirculation (New York, N.Y. 1994)</title><addtitle>Microcirculation</addtitle><description>ABSTRACT
Objective
Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds.
Mathematical Framework
Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds.
Results
A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system.
Conclusion
In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</description><subject>Animals</subject><subject>Biomimetics - methods</subject><subject>capillary network</subject><subject>computational modeling</subject><subject>Endothelial Cells - physiology</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Microcirculation - physiology</subject><subject>Microfluidics - methods</subject><subject>Models, Cardiovascular</subject><subject>Neovascularization, Physiologic</subject><subject>Physiology</subject><subject>retinal microcirculation</subject><subject>Retinal Vessels - physiology</subject><subject>vascular biology</subject><issn>1073-9688</issn><issn>1549-8719</issn><issn>1549-8719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0E4lJYeAAUiQUhArEdJ_YI5VIkCguwRo59DIYkLnYj1I1H4Bl5ElwKDAyc5Vz06ZPOj9A2zg5xrKPWKnWICefFElrHLBcpL7FYjnNW0lQUnK-hjRCesizjnIhVtEYFJZiwYh2psdPQ2O4hGUHr9KyT0RYS2yW3jx7g4-391LbQBes62RwkJ9a1cZ9aFWcvO_UI-iAZW-WdaXqr5_d7GVTfSJ9cw_TV-eewiVaMbAJsffcBujs_ux2O0qubi8vh8VWqSF4UKdNGU21AmZKynGLNdZ3znIu8lrkyhlHNwNS6EAwDZ4oxY0wJXBGDWZ0BHaC9hXfi3UsPYVq1NihoGtmB60NFcSZESTijEd39gz653scX5xQpCowZYZHaX1DxvRA8mGribSv9rMJZNY--mkdffUUf4Z1vZV-3oH_Rn6wjgBfAq21g9o-qGl8OhwvpJ2arkCQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ramanathan, Rahul</creator><creator>Borum, Andy</creator><creator>Rooney, David M.</creator><creator>Rabbany, Sina Y.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3105-0647</orcidid></search><sort><creationdate>202411</creationdate><title>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</title><author>Ramanathan, Rahul ; Borum, Andy ; Rooney, David M. ; Rabbany, Sina Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2466-5dfd3dfecf735431d8db484894ba4cff53d5efbd6951e85c55fff7e8c2f15b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biomimetics - methods</topic><topic>capillary network</topic><topic>computational modeling</topic><topic>Endothelial Cells - physiology</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Microcirculation - physiology</topic><topic>Microfluidics - methods</topic><topic>Models, Cardiovascular</topic><topic>Neovascularization, Physiologic</topic><topic>Physiology</topic><topic>retinal microcirculation</topic><topic>Retinal Vessels - physiology</topic><topic>vascular biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanathan, Rahul</creatorcontrib><creatorcontrib>Borum, Andy</creatorcontrib><creatorcontrib>Rooney, David M.</creatorcontrib><creatorcontrib>Rabbany, Sina Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanathan, Rahul</au><au>Borum, Andy</au><au>Rooney, David M.</au><au>Rabbany, Sina Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks</atitle><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle><addtitle>Microcirculation</addtitle><date>2024-11</date><risdate>2024</risdate><volume>31</volume><issue>8</issue><spage>e12886</spage><epage>n/a</epage><pages>e12886-n/a</pages><issn>1073-9688</issn><issn>1549-8719</issn><eissn>1549-8719</eissn><abstract>ABSTRACT
Objective
Neovascularization has been extensively studied because of its significant role in both physiological processes and diseases. The significance of vascular microfluidic platforms lies in its essential role in recreating an in vitro environment capable of supporting cellular and tissue systems through the process of neovascularization. Biomechanical properties in a tissue engineered system use fluid flow and transport properties to recapitulate physiological systems. This enables mimicry of organ systems which can further personalized and regenerative medicine. Thus, fluid hemodynamics can be used to study these flow patterns and create a system that mimics real physiological pathways and processes. The establishment of stable flow pathways encourages endothelial cells (ECs) ECs to undergo neovascularization. Specifically, the shear stress applied in capillary beds generates the increased proliferation and differentiation of ECs to build larger microcirculatory beds.
Mathematical Framework
Here, we describe a mathematical model that uses branching patterns and vessel morphology to predict hemodynamic parameters in capillary beds.
Results
A retinal capillary bed is used as one‐use case of our model to show how the mathematical framework can be used to determine hemodynamic parameters for any microfluidic system.
Conclusion
In doing so, this tool can be altered to be used to supplement emerging research areas in neovascularization.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39321256</pmid><doi>10.1111/micc.12886</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3105-0647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-9688 |
ispartof | Microcirculation (New York, N.Y. 1994), 2024-11, Vol.31 (8), p.e12886-n/a |
issn | 1073-9688 1549-8719 1549-8719 |
language | eng |
recordid | cdi_proquest_miscellaneous_3109972853 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Animals Biomimetics - methods capillary network computational modeling Endothelial Cells - physiology Hemodynamics Hemodynamics - physiology Humans Microcirculation - physiology Microfluidics - methods Models, Cardiovascular Neovascularization, Physiologic Physiology retinal microcirculation Retinal Vessels - physiology vascular biology |
title | Modeling Hemodynamics in Three‐Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Hemodynamics%20in%20Three%E2%80%90Dimensional,%20Biomimetic,%20Branched,%20Microfluidic,%20Vascular%20Networks&rft.jtitle=Microcirculation%20(New%20York,%20N.Y.%201994)&rft.au=Ramanathan,%20Rahul&rft.date=2024-11&rft.volume=31&rft.issue=8&rft.spage=e12886&rft.epage=n/a&rft.pages=e12886-n/a&rft.issn=1073-9688&rft.eissn=1549-8719&rft_id=info:doi/10.1111/micc.12886&rft_dat=%3Cproquest_cross%3E3109972853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126611525&rft_id=info:pmid/39321256&rfr_iscdi=true |