Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction

•Ultralow dose calcium scoring CT can be achieved with simultaneous reduction of the tube voltage and current.•Deep learning reconstruction enables reliable calcium scoring and risk categorization at ultralow dose.•The proven feasibility of ultralow dose calcium scoring CT with deep learning reconst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2024-12, Vol.181, p.111742, Article 111742
Hauptverfasser: Zhuo, Liyong, Xu, Shijie, Zhang, Guozhi, Xing, Lihong, Zhang, Yu, Ma, Zepeng, Wang, Jianing, Yin, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111742
container_title European journal of radiology
container_volume 181
creator Zhuo, Liyong
Xu, Shijie
Zhang, Guozhi
Xing, Lihong
Zhang, Yu
Ma, Zepeng
Wang, Jianing
Yin, Xiaoping
description •Ultralow dose calcium scoring CT can be achieved with simultaneous reduction of the tube voltage and current.•Deep learning reconstruction enables reliable calcium scoring and risk categorization at ultralow dose.•The proven feasibility of ultralow dose calcium scoring CT with deep learning reconstruction shows potential for further dose optimization. To explore the potential of the deep learning reconstruction (DLR) for ultralow dose calcium scoring CT (CSCT) with simultaneously reduced tube voltage and current. In this prospective study, seventy-five patients (group A) undergoing routine dose CSCT (120kVp/30mAs) were followed by a low dose (120kVp/20mAs) scan and another 81 (group B) were followed by an ultralow dose (80kVp/20mAs) scan. The hybrid iterative reconstruction was used for the routine dose data while the DLR for data of reduced dose. The calcium score and risk categorization were compared, where the correlation was evaluated using the intraclass correlation coefficient (ICC). The noise suppression performance of DLR was characterized by the contrast-to-noise ratio (CNR) between coronary arteries and pericoronary fat. The effective dose was 0.32 ± 0.03 vs. 0.48 ± 0.05 mSv for the two scans in group A and 0.09 ± 0.01 vs. 0.49 ± 0.05 mSv in group B. No significant difference was found on CACSs within either group (A: p = 0.10, ICC=0.99; B: p = 0.14, ICC=0.99), nor was it different on risk categorization (A: p = 0.32, ICC=0.99; B: p = 0.16, ICC=0.99). The DLR images exhibited higher CNR in both groups (A: p 
doi_str_mv 10.1016/j.ejrad.2024.111742
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109972635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X24004583</els_id><sourcerecordid>3109972635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-1f6f62322e1de9b6be13c76449bb810700c8bbfde937a51f110ee698ef0934f83</originalsourceid><addsrcrecordid>eNp9kEtrGzEQgEVJaZy0v6BQdMxlHT3Wq9Whh2LSNhDIJYHehB6zQWYtuXqk-N9XW6c55jRo5hvNzIfQZ0rWlNDhereGXdJuzQjr15RS0bN3aEVHwTohmDhDKyIY6Ug__jpHFznvCCGbXrIP6JxLzuiwESt0fJxL0nP8g13MgG1MMeh0xFbP1tc9zi3jwxPePmBdcAJXLThcqgH8HOeinwDr4LCtKUEo2BxxzQvvAA54Bp3C8vL7BUxgY8glVVt8DB_R-0nPGT69xEv0-P3mYfuzu7v_cbv9dtdZxmXp6DRMA-OMAXUgzWCAciuGvpfGjJQIQuxozNRqXOgNnSglAIMcYSKS99PIL9HV6d9Dir8r5KL2PluYZx0g1qw4JVIKNvBNQ_kJtSnmnGBSh9RWT0dFiVqcq53651wtztXJeev68jKgmj24157_khvw9QRAO_PZQ1LZeghNpG9KinLRvzngL0iSlVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109972635</pqid></control><display><type>article</type><title>Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhuo, Liyong ; Xu, Shijie ; Zhang, Guozhi ; Xing, Lihong ; Zhang, Yu ; Ma, Zepeng ; Wang, Jianing ; Yin, Xiaoping</creator><creatorcontrib>Zhuo, Liyong ; Xu, Shijie ; Zhang, Guozhi ; Xing, Lihong ; Zhang, Yu ; Ma, Zepeng ; Wang, Jianing ; Yin, Xiaoping</creatorcontrib><description>•Ultralow dose calcium scoring CT can be achieved with simultaneous reduction of the tube voltage and current.•Deep learning reconstruction enables reliable calcium scoring and risk categorization at ultralow dose.•The proven feasibility of ultralow dose calcium scoring CT with deep learning reconstruction shows potential for further dose optimization. To explore the potential of the deep learning reconstruction (DLR) for ultralow dose calcium scoring CT (CSCT) with simultaneously reduced tube voltage and current. In this prospective study, seventy-five patients (group A) undergoing routine dose CSCT (120kVp/30mAs) were followed by a low dose (120kVp/20mAs) scan and another 81 (group B) were followed by an ultralow dose (80kVp/20mAs) scan. The hybrid iterative reconstruction was used for the routine dose data while the DLR for data of reduced dose. The calcium score and risk categorization were compared, where the correlation was evaluated using the intraclass correlation coefficient (ICC). The noise suppression performance of DLR was characterized by the contrast-to-noise ratio (CNR) between coronary arteries and pericoronary fat. The effective dose was 0.32 ± 0.03 vs. 0.48 ± 0.05 mSv for the two scans in group A and 0.09 ± 0.01 vs. 0.49 ± 0.05 mSv in group B. No significant difference was found on CACSs within either group (A: p = 0.10, ICC=0.99; B: p = 0.14, ICC=0.99), nor was it different on risk categorization (A: p = 0.32, ICC=0.99; B: p = 0.16, ICC=0.99). The DLR images exhibited higher CNR in both groups (A: p &lt; 0.001; B: p = 0.001). The DLR allowed reliable calcium scoring in not only low dose CSCT with reduced tube current but ultralow dose CSCT with simultaneously reduced tube voltage and current, showing feasibility to be adopted in routine applications.</description><identifier>ISSN: 0720-048X</identifier><identifier>ISSN: 1872-7727</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2024.111742</identifier><identifier>PMID: 39321657</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Aged ; Coronary Angiography - methods ; Coronary artery calcium score ; Coronary artery disease ; Coronary Artery Disease - diagnostic imaging ; Deep Learning ; Deep learning reconstruction ; Dose reduction ; Female ; Humans ; Male ; Middle Aged ; Prospective Studies ; Radiation Dosage ; Radiographic Image Interpretation, Computer-Assisted - methods ; Tomography, X-Ray Computed - methods ; Vascular Calcification - diagnostic imaging</subject><ispartof>European journal of radiology, 2024-12, Vol.181, p.111742, Article 111742</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-1f6f62322e1de9b6be13c76449bb810700c8bbfde937a51f110ee698ef0934f83</cites><orcidid>0009-0009-6408-9335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2024.111742$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39321657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo, Liyong</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Zhang, Guozhi</creatorcontrib><creatorcontrib>Xing, Lihong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ma, Zepeng</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Yin, Xiaoping</creatorcontrib><title>Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•Ultralow dose calcium scoring CT can be achieved with simultaneous reduction of the tube voltage and current.•Deep learning reconstruction enables reliable calcium scoring and risk categorization at ultralow dose.•The proven feasibility of ultralow dose calcium scoring CT with deep learning reconstruction shows potential for further dose optimization. To explore the potential of the deep learning reconstruction (DLR) for ultralow dose calcium scoring CT (CSCT) with simultaneously reduced tube voltage and current. In this prospective study, seventy-five patients (group A) undergoing routine dose CSCT (120kVp/30mAs) were followed by a low dose (120kVp/20mAs) scan and another 81 (group B) were followed by an ultralow dose (80kVp/20mAs) scan. The hybrid iterative reconstruction was used for the routine dose data while the DLR for data of reduced dose. The calcium score and risk categorization were compared, where the correlation was evaluated using the intraclass correlation coefficient (ICC). The noise suppression performance of DLR was characterized by the contrast-to-noise ratio (CNR) between coronary arteries and pericoronary fat. The effective dose was 0.32 ± 0.03 vs. 0.48 ± 0.05 mSv for the two scans in group A and 0.09 ± 0.01 vs. 0.49 ± 0.05 mSv in group B. No significant difference was found on CACSs within either group (A: p = 0.10, ICC=0.99; B: p = 0.14, ICC=0.99), nor was it different on risk categorization (A: p = 0.32, ICC=0.99; B: p = 0.16, ICC=0.99). The DLR images exhibited higher CNR in both groups (A: p &lt; 0.001; B: p = 0.001). The DLR allowed reliable calcium scoring in not only low dose CSCT with reduced tube current but ultralow dose CSCT with simultaneously reduced tube voltage and current, showing feasibility to be adopted in routine applications.</description><subject>Aged</subject><subject>Coronary Angiography - methods</subject><subject>Coronary artery calcium score</subject><subject>Coronary artery disease</subject><subject>Coronary Artery Disease - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Deep learning reconstruction</subject><subject>Dose reduction</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prospective Studies</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Vascular Calcification - diagnostic imaging</subject><issn>0720-048X</issn><issn>1872-7727</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtrGzEQgEVJaZy0v6BQdMxlHT3Wq9Whh2LSNhDIJYHehB6zQWYtuXqk-N9XW6c55jRo5hvNzIfQZ0rWlNDhereGXdJuzQjr15RS0bN3aEVHwTohmDhDKyIY6Ug__jpHFznvCCGbXrIP6JxLzuiwESt0fJxL0nP8g13MgG1MMeh0xFbP1tc9zi3jwxPePmBdcAJXLThcqgH8HOeinwDr4LCtKUEo2BxxzQvvAA54Bp3C8vL7BUxgY8glVVt8DB_R-0nPGT69xEv0-P3mYfuzu7v_cbv9dtdZxmXp6DRMA-OMAXUgzWCAciuGvpfGjJQIQuxozNRqXOgNnSglAIMcYSKS99PIL9HV6d9Dir8r5KL2PluYZx0g1qw4JVIKNvBNQ_kJtSnmnGBSh9RWT0dFiVqcq53651wtztXJeev68jKgmj24157_khvw9QRAO_PZQ1LZeghNpG9KinLRvzngL0iSlVY</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhuo, Liyong</creator><creator>Xu, Shijie</creator><creator>Zhang, Guozhi</creator><creator>Xing, Lihong</creator><creator>Zhang, Yu</creator><creator>Ma, Zepeng</creator><creator>Wang, Jianing</creator><creator>Yin, Xiaoping</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-6408-9335</orcidid></search><sort><creationdate>202412</creationdate><title>Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction</title><author>Zhuo, Liyong ; Xu, Shijie ; Zhang, Guozhi ; Xing, Lihong ; Zhang, Yu ; Ma, Zepeng ; Wang, Jianing ; Yin, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-1f6f62322e1de9b6be13c76449bb810700c8bbfde937a51f110ee698ef0934f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Coronary Angiography - methods</topic><topic>Coronary artery calcium score</topic><topic>Coronary artery disease</topic><topic>Coronary Artery Disease - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Deep learning reconstruction</topic><topic>Dose reduction</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prospective Studies</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Vascular Calcification - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, Liyong</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Zhang, Guozhi</creatorcontrib><creatorcontrib>Xing, Lihong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ma, Zepeng</creatorcontrib><creatorcontrib>Wang, Jianing</creatorcontrib><creatorcontrib>Yin, Xiaoping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuo, Liyong</au><au>Xu, Shijie</au><au>Zhang, Guozhi</au><au>Xing, Lihong</au><au>Zhang, Yu</au><au>Ma, Zepeng</au><au>Wang, Jianing</au><au>Yin, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>181</volume><spage>111742</spage><pages>111742-</pages><artnum>111742</artnum><issn>0720-048X</issn><issn>1872-7727</issn><eissn>1872-7727</eissn><abstract>•Ultralow dose calcium scoring CT can be achieved with simultaneous reduction of the tube voltage and current.•Deep learning reconstruction enables reliable calcium scoring and risk categorization at ultralow dose.•The proven feasibility of ultralow dose calcium scoring CT with deep learning reconstruction shows potential for further dose optimization. To explore the potential of the deep learning reconstruction (DLR) for ultralow dose calcium scoring CT (CSCT) with simultaneously reduced tube voltage and current. In this prospective study, seventy-five patients (group A) undergoing routine dose CSCT (120kVp/30mAs) were followed by a low dose (120kVp/20mAs) scan and another 81 (group B) were followed by an ultralow dose (80kVp/20mAs) scan. The hybrid iterative reconstruction was used for the routine dose data while the DLR for data of reduced dose. The calcium score and risk categorization were compared, where the correlation was evaluated using the intraclass correlation coefficient (ICC). The noise suppression performance of DLR was characterized by the contrast-to-noise ratio (CNR) between coronary arteries and pericoronary fat. The effective dose was 0.32 ± 0.03 vs. 0.48 ± 0.05 mSv for the two scans in group A and 0.09 ± 0.01 vs. 0.49 ± 0.05 mSv in group B. No significant difference was found on CACSs within either group (A: p = 0.10, ICC=0.99; B: p = 0.14, ICC=0.99), nor was it different on risk categorization (A: p = 0.32, ICC=0.99; B: p = 0.16, ICC=0.99). The DLR images exhibited higher CNR in both groups (A: p &lt; 0.001; B: p = 0.001). The DLR allowed reliable calcium scoring in not only low dose CSCT with reduced tube current but ultralow dose CSCT with simultaneously reduced tube voltage and current, showing feasibility to be adopted in routine applications.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39321657</pmid><doi>10.1016/j.ejrad.2024.111742</doi><orcidid>https://orcid.org/0009-0009-6408-9335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2024-12, Vol.181, p.111742, Article 111742
issn 0720-048X
1872-7727
1872-7727
language eng
recordid cdi_proquest_miscellaneous_3109972635
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Coronary Angiography - methods
Coronary artery calcium score
Coronary artery disease
Coronary Artery Disease - diagnostic imaging
Deep Learning
Deep learning reconstruction
Dose reduction
Female
Humans
Male
Middle Aged
Prospective Studies
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Tomography, X-Ray Computed - methods
Vascular Calcification - diagnostic imaging
title Ultralow dose coronary calcium scoring CT at reduced tube voltage and current by using deep learning image reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow%20dose%20coronary%20calcium%20scoring%20CT%20at%20reduced%20tube%20voltage%20and%20current%20by%20using%20deep%20learning%20image%20reconstruction&rft.jtitle=European%20journal%20of%20radiology&rft.au=Zhuo,%20Liyong&rft.date=2024-12&rft.volume=181&rft.spage=111742&rft.pages=111742-&rft.artnum=111742&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2024.111742&rft_dat=%3Cproquest_cross%3E3109972635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109972635&rft_id=info:pmid/39321657&rft_els_id=S0720048X24004583&rfr_iscdi=true