The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: An in-vitro experimental study
Lumbar interbody fusion (LIF) using interbody cages is an established treatment for lumbar degenerative disc disease, but fusion results are known to be affected by risk factors such as bone mineral density (BMD), endplate geometry and cage position. At present, direct measurement of endplate-cage c...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2024-12, Vol.160, p.106754, Article 106754 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lumbar interbody fusion (LIF) using interbody cages is an established treatment for lumbar degenerative disc disease, but fusion results are known to be affected by risk factors such as bone mineral density (BMD), endplate geometry and cage position. At present, direct measurement of endplate-cage contact variables that affect LIF have not been fully identified. The aim of this study was to use cadaveric experiments to investigate the dependency between BMD, endplate geometry, cage parameters like type, orientation, position, and contact variables like stress and area. One vertebral body specimen from each of the five lumbar positions was harvested from five male donors. The lower half of each vertebra was potted and placed in a material testing machine (Instron 8874). A spinal cage was clamped to the machine then lowered to bring it into contact against the superior endplate. A lockable ball-joint was used to rotate the cage such that its inferior surface was congruent with the local endplate surface. A pressure sensor (Tekscan) was placed between the cage and endplate to record contact area and the peak and average contact pressures. Axial compression of 400 N was performed for five positions using a straight cage, and in one anterior position using a curved cage. The linear mixed model was utilised to perform data analyses for experimental results with statistical significance set at p |
---|---|
ISSN: | 1751-6161 1878-0180 1878-0180 |
DOI: | 10.1016/j.jmbbm.2024.106754 |