Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data

To create a novel comorbidity score tailored for surgical database research. Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. Adults undergoing 62 operations across 14...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of surgery 2024-09
Hauptverfasser: Chervu, Nikhil L, Balian, Jeff, Verma, Arjun, Sakowitz, Sara, Cho, Nam Yong, Mallick, Saad, Russell, Tara A, Benharash, Peyman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Annals of surgery
container_volume
creator Chervu, Nikhil L
Balian, Jeff
Verma, Arjun
Sakowitz, Sara
Cho, Nam Yong
Mallick, Saad
Russell, Tara A
Benharash, Peyman
description To create a novel comorbidity score tailored for surgical database research. Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. Adults undergoing 62 operations across 14 specialties were queried from the 2019 National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision (ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine learning algorithms predicting in-hospital mortality were used for logistic regression; resultant coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based on previously validated methodology. Areas under the receiver operating characteristic (AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases (SID), and 2016-2022 institutional data. 699,155 records from the 2019 NIS were used for model development. The CORE score better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-0.90 vs. 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs. 0.86, 95%CI:0.86-0.87), and institutional (0.88, 95%CI:0.87-0.89 vs. 0.84, 95%CI:0.83-0.85) databases (all P
doi_str_mv 10.1097/SLA.0000000000006544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108764860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108764860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1017-2c762fa4c8440be3f81628ec431ba102be8d1394b3d6f9c1c4aeb9a2e95a238f3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_gUguvenMadI2vRybXzAQrLsuaXoikbaZSTvYv7eyKeK5eeHwfsBDyDWwObA8uyvWizn7c2kixAmZQhLLCECwUzIdvzwSOY8n5CKED8ZASJadkwnPOSSCZ1PyusIdNm7bYtdTZ6iixeDf0e-jYovaGqvp0rXOV7a2_Z4W2nmkxnm6CUhtRxd1azsbeq96u0O6Ur26JGdGNQGvjjojm4f7t-VTtH55fF4u1pEGBlkU6yyNjRJaCsEq5EZCGkvUgkOlgMUVyhp4LipepybXoIXCKlcx5omKuTR8Rm4PvVvvPgcMfdnaoLFpVIduCCUHJrNUyJSNVnGwau9C8GjKrbet8vsSWPlNsxxplv9pjrGb48JQtVj_hn7w8S--rm9H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108764860</pqid></control><display><type>article</type><title>Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data</title><source>Journals@Ovid Complete</source><creator>Chervu, Nikhil L ; Balian, Jeff ; Verma, Arjun ; Sakowitz, Sara ; Cho, Nam Yong ; Mallick, Saad ; Russell, Tara A ; Benharash, Peyman</creator><creatorcontrib>Chervu, Nikhil L ; Balian, Jeff ; Verma, Arjun ; Sakowitz, Sara ; Cho, Nam Yong ; Mallick, Saad ; Russell, Tara A ; Benharash, Peyman</creatorcontrib><description>To create a novel comorbidity score tailored for surgical database research. Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. Adults undergoing 62 operations across 14 specialties were queried from the 2019 National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision (ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine learning algorithms predicting in-hospital mortality were used for logistic regression; resultant coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based on previously validated methodology. Areas under the receiver operating characteristic (AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases (SID), and 2016-2022 institutional data. 699,155 records from the 2019 NIS were used for model development. The CORE score better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-0.90 vs. 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs. 0.86, 95%CI:0.86-0.87), and institutional (0.88, 95%CI:0.87-0.89 vs. 0.84, 95%CI:0.83-0.85) databases (all P&lt;0.001). Likewise, it outperformed the CCI for the NIS (0.76, 95%CI:0.76-0.76), SID (0.78, 95%CI:0.77-0.78), and institutional (0.62, 95%CI:0.60-0.64) cohorts (all P&lt;0.001). The CORE score may better predict in-hospital mortality after surgery due to comorbid diseases in outcome-based research.</description><identifier>ISSN: 0003-4932</identifier><identifier>ISSN: 1528-1140</identifier><identifier>EISSN: 1528-1140</identifier><identifier>DOI: 10.1097/SLA.0000000000006544</identifier><identifier>PMID: 39315437</identifier><language>eng</language><publisher>United States</publisher><ispartof>Annals of surgery, 2024-09</ispartof><rights>Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-7318-7571 ; 0000-0003-0327-9847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39315437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chervu, Nikhil L</creatorcontrib><creatorcontrib>Balian, Jeff</creatorcontrib><creatorcontrib>Verma, Arjun</creatorcontrib><creatorcontrib>Sakowitz, Sara</creatorcontrib><creatorcontrib>Cho, Nam Yong</creatorcontrib><creatorcontrib>Mallick, Saad</creatorcontrib><creatorcontrib>Russell, Tara A</creatorcontrib><creatorcontrib>Benharash, Peyman</creatorcontrib><title>Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data</title><title>Annals of surgery</title><addtitle>Ann Surg</addtitle><description>To create a novel comorbidity score tailored for surgical database research. Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. Adults undergoing 62 operations across 14 specialties were queried from the 2019 National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision (ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine learning algorithms predicting in-hospital mortality were used for logistic regression; resultant coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based on previously validated methodology. Areas under the receiver operating characteristic (AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases (SID), and 2016-2022 institutional data. 699,155 records from the 2019 NIS were used for model development. The CORE score better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-0.90 vs. 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs. 0.86, 95%CI:0.86-0.87), and institutional (0.88, 95%CI:0.87-0.89 vs. 0.84, 95%CI:0.83-0.85) databases (all P&lt;0.001). Likewise, it outperformed the CCI for the NIS (0.76, 95%CI:0.76-0.76), SID (0.78, 95%CI:0.77-0.78), and institutional (0.62, 95%CI:0.60-0.64) cohorts (all P&lt;0.001). The CORE score may better predict in-hospital mortality after surgery due to comorbid diseases in outcome-based research.</description><issn>0003-4932</issn><issn>1528-1140</issn><issn>1528-1140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMobk7_gUguvenMadI2vRybXzAQrLsuaXoikbaZSTvYv7eyKeK5eeHwfsBDyDWwObA8uyvWizn7c2kixAmZQhLLCECwUzIdvzwSOY8n5CKED8ZASJadkwnPOSSCZ1PyusIdNm7bYtdTZ6iixeDf0e-jYovaGqvp0rXOV7a2_Z4W2nmkxnm6CUhtRxd1azsbeq96u0O6Ur26JGdGNQGvjjojm4f7t-VTtH55fF4u1pEGBlkU6yyNjRJaCsEq5EZCGkvUgkOlgMUVyhp4LipepybXoIXCKlcx5omKuTR8Rm4PvVvvPgcMfdnaoLFpVIduCCUHJrNUyJSNVnGwau9C8GjKrbet8vsSWPlNsxxplv9pjrGb48JQtVj_hn7w8S--rm9H</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Chervu, Nikhil L</creator><creator>Balian, Jeff</creator><creator>Verma, Arjun</creator><creator>Sakowitz, Sara</creator><creator>Cho, Nam Yong</creator><creator>Mallick, Saad</creator><creator>Russell, Tara A</creator><creator>Benharash, Peyman</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-7318-7571</orcidid><orcidid>https://orcid.org/0000-0003-0327-9847</orcidid></search><sort><creationdate>20240924</creationdate><title>Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data</title><author>Chervu, Nikhil L ; Balian, Jeff ; Verma, Arjun ; Sakowitz, Sara ; Cho, Nam Yong ; Mallick, Saad ; Russell, Tara A ; Benharash, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1017-2c762fa4c8440be3f81628ec431ba102be8d1394b3d6f9c1c4aeb9a2e95a238f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chervu, Nikhil L</creatorcontrib><creatorcontrib>Balian, Jeff</creatorcontrib><creatorcontrib>Verma, Arjun</creatorcontrib><creatorcontrib>Sakowitz, Sara</creatorcontrib><creatorcontrib>Cho, Nam Yong</creatorcontrib><creatorcontrib>Mallick, Saad</creatorcontrib><creatorcontrib>Russell, Tara A</creatorcontrib><creatorcontrib>Benharash, Peyman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chervu, Nikhil L</au><au>Balian, Jeff</au><au>Verma, Arjun</au><au>Sakowitz, Sara</au><au>Cho, Nam Yong</au><au>Mallick, Saad</au><au>Russell, Tara A</au><au>Benharash, Peyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data</atitle><jtitle>Annals of surgery</jtitle><addtitle>Ann Surg</addtitle><date>2024-09-24</date><risdate>2024</risdate><issn>0003-4932</issn><issn>1528-1140</issn><eissn>1528-1140</eissn><abstract>To create a novel comorbidity score tailored for surgical database research. Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts. Adults undergoing 62 operations across 14 specialties were queried from the 2019 National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision (ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine learning algorithms predicting in-hospital mortality were used for logistic regression; resultant coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based on previously validated methodology. Areas under the receiver operating characteristic (AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases (SID), and 2016-2022 institutional data. 699,155 records from the 2019 NIS were used for model development. The CORE score better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-0.90 vs. 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs. 0.86, 95%CI:0.86-0.87), and institutional (0.88, 95%CI:0.87-0.89 vs. 0.84, 95%CI:0.83-0.85) databases (all P&lt;0.001). Likewise, it outperformed the CCI for the NIS (0.76, 95%CI:0.76-0.76), SID (0.78, 95%CI:0.77-0.78), and institutional (0.62, 95%CI:0.60-0.64) cohorts (all P&lt;0.001). The CORE score may better predict in-hospital mortality after surgery due to comorbid diseases in outcome-based research.</abstract><cop>United States</cop><pmid>39315437</pmid><doi>10.1097/SLA.0000000000006544</doi><orcidid>https://orcid.org/0009-0004-7318-7571</orcidid><orcidid>https://orcid.org/0000-0003-0327-9847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-4932
ispartof Annals of surgery, 2024-09
issn 0003-4932
1528-1140
1528-1140
language eng
recordid cdi_proquest_miscellaneous_3108764860
source Journals@Ovid Complete
title Development of a Surgery-Specific Comorbidity Score for Use in Administrative Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Surgery-Specific%20Comorbidity%20Score%20for%20Use%20in%20Administrative%20Data&rft.jtitle=Annals%20of%20surgery&rft.au=Chervu,%20Nikhil%20L&rft.date=2024-09-24&rft.issn=0003-4932&rft.eissn=1528-1140&rft_id=info:doi/10.1097/SLA.0000000000006544&rft_dat=%3Cproquest_cross%3E3108764860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108764860&rft_id=info:pmid/39315437&rfr_iscdi=true