Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized
Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syn...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-10, Vol.18 (39), p.26937-26947 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26947 |
---|---|
container_issue | 39 |
container_start_page | 26937 |
container_title | ACS nano |
container_volume | 18 |
creator | Mathiesen, Jette K. Ashberry, Hannah M. Pokratath, Rohan Gamler, Jocelyn T. L. Wang, Baiyu Kirsch, Andrea Kjær, Emil T. S. Banerjee, Soham Jensen, Kirsten M. Ø. Skrabalak, Sara E. |
description | Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E 0 red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E 0 red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs. |
doi_str_mv | 10.1021/acsnano.4c08835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108387965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108387965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-f3d7c72f3080e4a8ea3463f8e37a7a7408d7c3bfd0e239785f36d468a56a28db3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqUws6GMSCitHSe2M0IEpVIFAyDYLCe5qKkcu9jJUH49Rg1s6IY76b57d_cQuiR4TnBCFqryRhk7TyssBM2O0JTklMVYsI_jvzojE3Tm_RbjjAvOTtGE5knOBcunaPW-2UeF1dq2tdLRy970G_DgI9tEd20HvdK6raKnsGSnXN9WOvQKZYztoxKiJRhwSrdfUJ-jk0ZpDxdjnqG3h_vX4jFePy9Xxe06VgnhfdzQmlc8aSgWGFIlQNGU0UYA5SpEikXo07KpMSQ0HJk1lNUpEypjKhF1SWfo-qC7c_ZzAN_LrvUVaK0M2MFLSrCggucsC-jigFbOeu-gkTvXdsrtJcHyxz85-idH_8LE1Sg-lB3Uf_yvYQG4OQBhUm7t4Ez49V-5b9X0e9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108387965</pqid></control><display><type>article</type><title>Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized</title><source>American Chemical Society Web Editions</source><creator>Mathiesen, Jette K. ; Ashberry, Hannah M. ; Pokratath, Rohan ; Gamler, Jocelyn T. L. ; Wang, Baiyu ; Kirsch, Andrea ; Kjær, Emil T. S. ; Banerjee, Soham ; Jensen, Kirsten M. Ø. ; Skrabalak, Sara E.</creator><creatorcontrib>Mathiesen, Jette K. ; Ashberry, Hannah M. ; Pokratath, Rohan ; Gamler, Jocelyn T. L. ; Wang, Baiyu ; Kirsch, Andrea ; Kjær, Emil T. S. ; Banerjee, Soham ; Jensen, Kirsten M. Ø. ; Skrabalak, Sara E.</creatorcontrib><description>Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E 0 red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E 0 red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08835</identifier><identifier>PMID: 39297869</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-10, Vol.18 (39), p.26937-26947</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-f3d7c72f3080e4a8ea3463f8e37a7a7408d7c3bfd0e239785f36d468a56a28db3</cites><orcidid>0000-0002-6838-3939 ; 0000-0002-1873-100X ; 0000-0002-0298-6016 ; 0000-0003-2602-7415 ; 0000-0001-9218-342X ; 0000-0001-9271-493X ; 0000-0003-0291-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c08835$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c08835$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39297869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathiesen, Jette K.</creatorcontrib><creatorcontrib>Ashberry, Hannah M.</creatorcontrib><creatorcontrib>Pokratath, Rohan</creatorcontrib><creatorcontrib>Gamler, Jocelyn T. L.</creatorcontrib><creatorcontrib>Wang, Baiyu</creatorcontrib><creatorcontrib>Kirsch, Andrea</creatorcontrib><creatorcontrib>Kjær, Emil T. S.</creatorcontrib><creatorcontrib>Banerjee, Soham</creatorcontrib><creatorcontrib>Jensen, Kirsten M. Ø.</creatorcontrib><creatorcontrib>Skrabalak, Sara E.</creatorcontrib><title>Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E 0 red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E 0 red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqUws6GMSCitHSe2M0IEpVIFAyDYLCe5qKkcu9jJUH49Rg1s6IY76b57d_cQuiR4TnBCFqryRhk7TyssBM2O0JTklMVYsI_jvzojE3Tm_RbjjAvOTtGE5knOBcunaPW-2UeF1dq2tdLRy970G_DgI9tEd20HvdK6raKnsGSnXN9WOvQKZYztoxKiJRhwSrdfUJ-jk0ZpDxdjnqG3h_vX4jFePy9Xxe06VgnhfdzQmlc8aSgWGFIlQNGU0UYA5SpEikXo07KpMSQ0HJk1lNUpEypjKhF1SWfo-qC7c_ZzAN_LrvUVaK0M2MFLSrCggucsC-jigFbOeu-gkTvXdsrtJcHyxz85-idH_8LE1Sg-lB3Uf_yvYQG4OQBhUm7t4Ez49V-5b9X0e9Q</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mathiesen, Jette K.</creator><creator>Ashberry, Hannah M.</creator><creator>Pokratath, Rohan</creator><creator>Gamler, Jocelyn T. L.</creator><creator>Wang, Baiyu</creator><creator>Kirsch, Andrea</creator><creator>Kjær, Emil T. S.</creator><creator>Banerjee, Soham</creator><creator>Jensen, Kirsten M. Ø.</creator><creator>Skrabalak, Sara E.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6838-3939</orcidid><orcidid>https://orcid.org/0000-0002-1873-100X</orcidid><orcidid>https://orcid.org/0000-0002-0298-6016</orcidid><orcidid>https://orcid.org/0000-0003-2602-7415</orcidid><orcidid>https://orcid.org/0000-0001-9218-342X</orcidid><orcidid>https://orcid.org/0000-0001-9271-493X</orcidid><orcidid>https://orcid.org/0000-0003-0291-217X</orcidid></search><sort><creationdate>20241001</creationdate><title>Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized</title><author>Mathiesen, Jette K. ; Ashberry, Hannah M. ; Pokratath, Rohan ; Gamler, Jocelyn T. L. ; Wang, Baiyu ; Kirsch, Andrea ; Kjær, Emil T. S. ; Banerjee, Soham ; Jensen, Kirsten M. Ø. ; Skrabalak, Sara E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-f3d7c72f3080e4a8ea3463f8e37a7a7408d7c3bfd0e239785f36d468a56a28db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathiesen, Jette K.</creatorcontrib><creatorcontrib>Ashberry, Hannah M.</creatorcontrib><creatorcontrib>Pokratath, Rohan</creatorcontrib><creatorcontrib>Gamler, Jocelyn T. L.</creatorcontrib><creatorcontrib>Wang, Baiyu</creatorcontrib><creatorcontrib>Kirsch, Andrea</creatorcontrib><creatorcontrib>Kjær, Emil T. S.</creatorcontrib><creatorcontrib>Banerjee, Soham</creatorcontrib><creatorcontrib>Jensen, Kirsten M. Ø.</creatorcontrib><creatorcontrib>Skrabalak, Sara E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathiesen, Jette K.</au><au>Ashberry, Hannah M.</au><au>Pokratath, Rohan</au><au>Gamler, Jocelyn T. L.</au><au>Wang, Baiyu</au><au>Kirsch, Andrea</au><au>Kjær, Emil T. S.</au><au>Banerjee, Soham</au><au>Jensen, Kirsten M. Ø.</au><au>Skrabalak, Sara E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>18</volume><issue>39</issue><spage>26937</spage><epage>26947</epage><pages>26937-26947</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E 0 red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E 0 red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39297869</pmid><doi>10.1021/acsnano.4c08835</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6838-3939</orcidid><orcidid>https://orcid.org/0000-0002-1873-100X</orcidid><orcidid>https://orcid.org/0000-0002-0298-6016</orcidid><orcidid>https://orcid.org/0000-0003-2602-7415</orcidid><orcidid>https://orcid.org/0000-0001-9218-342X</orcidid><orcidid>https://orcid.org/0000-0001-9271-493X</orcidid><orcidid>https://orcid.org/0000-0003-0291-217X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-10, Vol.18 (39), p.26937-26947 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3108387965 |
source | American Chemical Society Web Editions |
title | Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Colloidal%20Syntheses%20of%20Bimetallic%20Nanoparticles%20Cannot%20be%20Generalized&rft.jtitle=ACS%20nano&rft.au=Mathiesen,%20Jette%20K.&rft.date=2024-10-01&rft.volume=18&rft.issue=39&rft.spage=26937&rft.epage=26947&rft.pages=26937-26947&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08835&rft_dat=%3Cproquest_cross%3E3108387965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108387965&rft_id=info:pmid/39297869&rfr_iscdi=true |