How large language models can reshape collective intelligence
Collective intelligence underpins the success of groups, organizations, markets and societies. Through distributed cognition and coordination, collectives can achieve outcomes that exceed the capabilities of individuals—even experts—resulting in improved accuracy and novel capabilities. Often, colle...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2024-09, Vol.8 (9), p.1643-1655 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1655 |
---|---|
container_issue | 9 |
container_start_page | 1643 |
container_title | Nature human behaviour |
container_volume | 8 |
creator | Burton, Jason W. Lopez-Lopez, Ezequiel Hechtlinger, Shahar Rahwan, Zoe Aeschbach, Samuel Bakker, Michiel A. Becker, Joshua A. Berditchevskaia, Aleks Berger, Julian Brinkmann, Levin Flek, Lucie Herzog, Stefan M. Huang, Saffron Kapoor, Sayash Narayanan, Arvind Nussberger, Anne-Marie Yasseri, Taha Nickl, Pietro Almaatouq, Abdullah Hahn, Ulrike Kurvers, Ralf H. J. M. Leavy, Susan Rahwan, Iyad Siddarth, Divya Siu, Alice Woolley, Anita W. Wulff, Dirk U. Hertwig, Ralph |
description | Collective intelligence underpins the success of groups, organizations, markets and societies. Through distributed cognition and coordination, collectives can achieve outcomes that exceed the capabilities of individuals—even experts—resulting in improved accuracy and novel capabilities. Often, collective intelligence is supported by information technology, such as online prediction markets that elicit the ‘wisdom of crowds’, online forums that structure collective deliberation or digital platforms that crowdsource knowledge from the public. Large language models, however, are transforming how information is aggregated, accessed and transmitted online. Here we focus on the unique opportunities and challenges this transformation poses for collective intelligence. We bring together interdisciplinary perspectives from industry and academia to identify potential benefits, risks, policy-relevant considerations and open research questions, culminating in a call for a closer examination of how large language models affect humans’ ability to collectively tackle complex problems.
Collective intelligence is the basis for group success and is frequently supported by information technology. Burton et al. argue that large language models are transforming information access and transmission, presenting both opportunities and challenges for collective intelligence. |
doi_str_mv | 10.1038/s41562-024-01959-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107505770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108453310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-ba9490faf9cd665e538d92f872a9aabb4f8b56cbd723d4e903b692e1d01613093</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EolXpCzCgSCwsAd8dDwyoAopUiQVmy3FOQqpcit2AeHtcwk0MLD5H8uffvz6Ejgk-J5hlF4ETIWmKKU8x0UKneg9NKdMqZUzx_V_7BM1DWGMcMca1kodowjTDXEk8RZfL_jVprK8gnl012Li0fQFNSJztEg_hyW4gcX3TgNvWL5DU3Raapq6gc3CEDkrbBJh_zhl6vLl-WCzT1f3t3eJqlToq5DbNreYal7bUrpBSgGBZoWmZKWq1tXnOyywX0uWFoqzgoDHLpaZACkwkYVizGTobcze-fx4gbE1bBxdr2A76IRhGsBJYKIUjevoHXfeD72K7HZVxweKIFB0p5_sQPJRm4-vW-jdDsNn5NaNfE_2aD79m1-LkM3rIWyi-n3zZjAAbgRCvugr8z9__xL4DwkOEOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108453310</pqid></control><display><type>article</type><title>How large language models can reshape collective intelligence</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Burton, Jason W. ; Lopez-Lopez, Ezequiel ; Hechtlinger, Shahar ; Rahwan, Zoe ; Aeschbach, Samuel ; Bakker, Michiel A. ; Becker, Joshua A. ; Berditchevskaia, Aleks ; Berger, Julian ; Brinkmann, Levin ; Flek, Lucie ; Herzog, Stefan M. ; Huang, Saffron ; Kapoor, Sayash ; Narayanan, Arvind ; Nussberger, Anne-Marie ; Yasseri, Taha ; Nickl, Pietro ; Almaatouq, Abdullah ; Hahn, Ulrike ; Kurvers, Ralf H. J. M. ; Leavy, Susan ; Rahwan, Iyad ; Siddarth, Divya ; Siu, Alice ; Woolley, Anita W. ; Wulff, Dirk U. ; Hertwig, Ralph</creator><creatorcontrib>Burton, Jason W. ; Lopez-Lopez, Ezequiel ; Hechtlinger, Shahar ; Rahwan, Zoe ; Aeschbach, Samuel ; Bakker, Michiel A. ; Becker, Joshua A. ; Berditchevskaia, Aleks ; Berger, Julian ; Brinkmann, Levin ; Flek, Lucie ; Herzog, Stefan M. ; Huang, Saffron ; Kapoor, Sayash ; Narayanan, Arvind ; Nussberger, Anne-Marie ; Yasseri, Taha ; Nickl, Pietro ; Almaatouq, Abdullah ; Hahn, Ulrike ; Kurvers, Ralf H. J. M. ; Leavy, Susan ; Rahwan, Iyad ; Siddarth, Divya ; Siu, Alice ; Woolley, Anita W. ; Wulff, Dirk U. ; Hertwig, Ralph</creatorcontrib><description>Collective intelligence underpins the success of groups, organizations, markets and societies. Through distributed cognition and coordination, collectives can achieve outcomes that exceed the capabilities of individuals—even experts—resulting in improved accuracy and novel capabilities. Often, collective intelligence is supported by information technology, such as online prediction markets that elicit the ‘wisdom of crowds’, online forums that structure collective deliberation or digital platforms that crowdsource knowledge from the public. Large language models, however, are transforming how information is aggregated, accessed and transmitted online. Here we focus on the unique opportunities and challenges this transformation poses for collective intelligence. We bring together interdisciplinary perspectives from industry and academia to identify potential benefits, risks, policy-relevant considerations and open research questions, culminating in a call for a closer examination of how large language models affect humans’ ability to collectively tackle complex problems.
Collective intelligence is the basis for group success and is frequently supported by information technology. Burton et al. argue that large language models are transforming information access and transmission, presenting both opportunities and challenges for collective intelligence.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-024-01959-9</identifier><identifier>PMID: 39304760</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>4014/4045 ; 706/689/522 ; Behavioral Sciences ; Biomedical and Life Sciences ; Cognition ; Coordination ; Crowds ; Experimental Psychology ; Information technology ; Intelligence ; Interdisciplinary aspects ; Language ; Language modeling ; Large language models ; Life Sciences ; Markets ; Microeconomics ; Neurosciences ; Personality and Social Psychology ; Perspective ; Transformation ; Wisdom</subject><ispartof>Nature human behaviour, 2024-09, Vol.8 (9), p.1643-1655</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-ba9490faf9cd665e538d92f872a9aabb4f8b56cbd723d4e903b692e1d01613093</cites><orcidid>0000-0003-0650-822X ; 0000-0003-1506-0105 ; 0000-0002-1805-9399 ; 0000-0002-1800-6094 ; 0000-0002-9908-9556 ; 0000-0002-1642-8744 ; 0000-0002-8467-9123 ; 0000-0002-4008-8022 ; 0000-0002-3460-0392 ; 0000-0002-6167-4901 ; 0000-0002-6797-2299 ; 0000-0003-2329-6433 ; 0000-0002-1796-4303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41562-024-01959-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41562-024-01959-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39304760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burton, Jason W.</creatorcontrib><creatorcontrib>Lopez-Lopez, Ezequiel</creatorcontrib><creatorcontrib>Hechtlinger, Shahar</creatorcontrib><creatorcontrib>Rahwan, Zoe</creatorcontrib><creatorcontrib>Aeschbach, Samuel</creatorcontrib><creatorcontrib>Bakker, Michiel A.</creatorcontrib><creatorcontrib>Becker, Joshua A.</creatorcontrib><creatorcontrib>Berditchevskaia, Aleks</creatorcontrib><creatorcontrib>Berger, Julian</creatorcontrib><creatorcontrib>Brinkmann, Levin</creatorcontrib><creatorcontrib>Flek, Lucie</creatorcontrib><creatorcontrib>Herzog, Stefan M.</creatorcontrib><creatorcontrib>Huang, Saffron</creatorcontrib><creatorcontrib>Kapoor, Sayash</creatorcontrib><creatorcontrib>Narayanan, Arvind</creatorcontrib><creatorcontrib>Nussberger, Anne-Marie</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Nickl, Pietro</creatorcontrib><creatorcontrib>Almaatouq, Abdullah</creatorcontrib><creatorcontrib>Hahn, Ulrike</creatorcontrib><creatorcontrib>Kurvers, Ralf H. J. M.</creatorcontrib><creatorcontrib>Leavy, Susan</creatorcontrib><creatorcontrib>Rahwan, Iyad</creatorcontrib><creatorcontrib>Siddarth, Divya</creatorcontrib><creatorcontrib>Siu, Alice</creatorcontrib><creatorcontrib>Woolley, Anita W.</creatorcontrib><creatorcontrib>Wulff, Dirk U.</creatorcontrib><creatorcontrib>Hertwig, Ralph</creatorcontrib><title>How large language models can reshape collective intelligence</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>Nat Hum Behav</addtitle><description>Collective intelligence underpins the success of groups, organizations, markets and societies. Through distributed cognition and coordination, collectives can achieve outcomes that exceed the capabilities of individuals—even experts—resulting in improved accuracy and novel capabilities. Often, collective intelligence is supported by information technology, such as online prediction markets that elicit the ‘wisdom of crowds’, online forums that structure collective deliberation or digital platforms that crowdsource knowledge from the public. Large language models, however, are transforming how information is aggregated, accessed and transmitted online. Here we focus on the unique opportunities and challenges this transformation poses for collective intelligence. We bring together interdisciplinary perspectives from industry and academia to identify potential benefits, risks, policy-relevant considerations and open research questions, culminating in a call for a closer examination of how large language models affect humans’ ability to collectively tackle complex problems.
Collective intelligence is the basis for group success and is frequently supported by information technology. Burton et al. argue that large language models are transforming information access and transmission, presenting both opportunities and challenges for collective intelligence.</description><subject>4014/4045</subject><subject>706/689/522</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cognition</subject><subject>Coordination</subject><subject>Crowds</subject><subject>Experimental Psychology</subject><subject>Information technology</subject><subject>Intelligence</subject><subject>Interdisciplinary aspects</subject><subject>Language</subject><subject>Language modeling</subject><subject>Large language models</subject><subject>Life Sciences</subject><subject>Markets</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Personality and Social Psychology</subject><subject>Perspective</subject><subject>Transformation</subject><subject>Wisdom</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EolXpCzCgSCwsAd8dDwyoAopUiQVmy3FOQqpcit2AeHtcwk0MLD5H8uffvz6Ejgk-J5hlF4ETIWmKKU8x0UKneg9NKdMqZUzx_V_7BM1DWGMcMca1kodowjTDXEk8RZfL_jVprK8gnl012Li0fQFNSJztEg_hyW4gcX3TgNvWL5DU3Raapq6gc3CEDkrbBJh_zhl6vLl-WCzT1f3t3eJqlToq5DbNreYal7bUrpBSgGBZoWmZKWq1tXnOyywX0uWFoqzgoDHLpaZACkwkYVizGTobcze-fx4gbE1bBxdr2A76IRhGsBJYKIUjevoHXfeD72K7HZVxweKIFB0p5_sQPJRm4-vW-jdDsNn5NaNfE_2aD79m1-LkM3rIWyi-n3zZjAAbgRCvugr8z9__xL4DwkOEOw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Burton, Jason W.</creator><creator>Lopez-Lopez, Ezequiel</creator><creator>Hechtlinger, Shahar</creator><creator>Rahwan, Zoe</creator><creator>Aeschbach, Samuel</creator><creator>Bakker, Michiel A.</creator><creator>Becker, Joshua A.</creator><creator>Berditchevskaia, Aleks</creator><creator>Berger, Julian</creator><creator>Brinkmann, Levin</creator><creator>Flek, Lucie</creator><creator>Herzog, Stefan M.</creator><creator>Huang, Saffron</creator><creator>Kapoor, Sayash</creator><creator>Narayanan, Arvind</creator><creator>Nussberger, Anne-Marie</creator><creator>Yasseri, Taha</creator><creator>Nickl, Pietro</creator><creator>Almaatouq, Abdullah</creator><creator>Hahn, Ulrike</creator><creator>Kurvers, Ralf H. J. M.</creator><creator>Leavy, Susan</creator><creator>Rahwan, Iyad</creator><creator>Siddarth, Divya</creator><creator>Siu, Alice</creator><creator>Woolley, Anita W.</creator><creator>Wulff, Dirk U.</creator><creator>Hertwig, Ralph</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0650-822X</orcidid><orcidid>https://orcid.org/0000-0003-1506-0105</orcidid><orcidid>https://orcid.org/0000-0002-1805-9399</orcidid><orcidid>https://orcid.org/0000-0002-1800-6094</orcidid><orcidid>https://orcid.org/0000-0002-9908-9556</orcidid><orcidid>https://orcid.org/0000-0002-1642-8744</orcidid><orcidid>https://orcid.org/0000-0002-8467-9123</orcidid><orcidid>https://orcid.org/0000-0002-4008-8022</orcidid><orcidid>https://orcid.org/0000-0002-3460-0392</orcidid><orcidid>https://orcid.org/0000-0002-6167-4901</orcidid><orcidid>https://orcid.org/0000-0002-6797-2299</orcidid><orcidid>https://orcid.org/0000-0003-2329-6433</orcidid><orcidid>https://orcid.org/0000-0002-1796-4303</orcidid></search><sort><creationdate>20240901</creationdate><title>How large language models can reshape collective intelligence</title><author>Burton, Jason W. ; Lopez-Lopez, Ezequiel ; Hechtlinger, Shahar ; Rahwan, Zoe ; Aeschbach, Samuel ; Bakker, Michiel A. ; Becker, Joshua A. ; Berditchevskaia, Aleks ; Berger, Julian ; Brinkmann, Levin ; Flek, Lucie ; Herzog, Stefan M. ; Huang, Saffron ; Kapoor, Sayash ; Narayanan, Arvind ; Nussberger, Anne-Marie ; Yasseri, Taha ; Nickl, Pietro ; Almaatouq, Abdullah ; Hahn, Ulrike ; Kurvers, Ralf H. J. M. ; Leavy, Susan ; Rahwan, Iyad ; Siddarth, Divya ; Siu, Alice ; Woolley, Anita W. ; Wulff, Dirk U. ; Hertwig, Ralph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-ba9490faf9cd665e538d92f872a9aabb4f8b56cbd723d4e903b692e1d01613093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4014/4045</topic><topic>706/689/522</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cognition</topic><topic>Coordination</topic><topic>Crowds</topic><topic>Experimental Psychology</topic><topic>Information technology</topic><topic>Intelligence</topic><topic>Interdisciplinary aspects</topic><topic>Language</topic><topic>Language modeling</topic><topic>Large language models</topic><topic>Life Sciences</topic><topic>Markets</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Personality and Social Psychology</topic><topic>Perspective</topic><topic>Transformation</topic><topic>Wisdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burton, Jason W.</creatorcontrib><creatorcontrib>Lopez-Lopez, Ezequiel</creatorcontrib><creatorcontrib>Hechtlinger, Shahar</creatorcontrib><creatorcontrib>Rahwan, Zoe</creatorcontrib><creatorcontrib>Aeschbach, Samuel</creatorcontrib><creatorcontrib>Bakker, Michiel A.</creatorcontrib><creatorcontrib>Becker, Joshua A.</creatorcontrib><creatorcontrib>Berditchevskaia, Aleks</creatorcontrib><creatorcontrib>Berger, Julian</creatorcontrib><creatorcontrib>Brinkmann, Levin</creatorcontrib><creatorcontrib>Flek, Lucie</creatorcontrib><creatorcontrib>Herzog, Stefan M.</creatorcontrib><creatorcontrib>Huang, Saffron</creatorcontrib><creatorcontrib>Kapoor, Sayash</creatorcontrib><creatorcontrib>Narayanan, Arvind</creatorcontrib><creatorcontrib>Nussberger, Anne-Marie</creatorcontrib><creatorcontrib>Yasseri, Taha</creatorcontrib><creatorcontrib>Nickl, Pietro</creatorcontrib><creatorcontrib>Almaatouq, Abdullah</creatorcontrib><creatorcontrib>Hahn, Ulrike</creatorcontrib><creatorcontrib>Kurvers, Ralf H. J. M.</creatorcontrib><creatorcontrib>Leavy, Susan</creatorcontrib><creatorcontrib>Rahwan, Iyad</creatorcontrib><creatorcontrib>Siddarth, Divya</creatorcontrib><creatorcontrib>Siu, Alice</creatorcontrib><creatorcontrib>Woolley, Anita W.</creatorcontrib><creatorcontrib>Wulff, Dirk U.</creatorcontrib><creatorcontrib>Hertwig, Ralph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burton, Jason W.</au><au>Lopez-Lopez, Ezequiel</au><au>Hechtlinger, Shahar</au><au>Rahwan, Zoe</au><au>Aeschbach, Samuel</au><au>Bakker, Michiel A.</au><au>Becker, Joshua A.</au><au>Berditchevskaia, Aleks</au><au>Berger, Julian</au><au>Brinkmann, Levin</au><au>Flek, Lucie</au><au>Herzog, Stefan M.</au><au>Huang, Saffron</au><au>Kapoor, Sayash</au><au>Narayanan, Arvind</au><au>Nussberger, Anne-Marie</au><au>Yasseri, Taha</au><au>Nickl, Pietro</au><au>Almaatouq, Abdullah</au><au>Hahn, Ulrike</au><au>Kurvers, Ralf H. J. M.</au><au>Leavy, Susan</au><au>Rahwan, Iyad</au><au>Siddarth, Divya</au><au>Siu, Alice</au><au>Woolley, Anita W.</au><au>Wulff, Dirk U.</au><au>Hertwig, Ralph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How large language models can reshape collective intelligence</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><addtitle>Nat Hum Behav</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>8</volume><issue>9</issue><spage>1643</spage><epage>1655</epage><pages>1643-1655</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Collective intelligence underpins the success of groups, organizations, markets and societies. Through distributed cognition and coordination, collectives can achieve outcomes that exceed the capabilities of individuals—even experts—resulting in improved accuracy and novel capabilities. Often, collective intelligence is supported by information technology, such as online prediction markets that elicit the ‘wisdom of crowds’, online forums that structure collective deliberation or digital platforms that crowdsource knowledge from the public. Large language models, however, are transforming how information is aggregated, accessed and transmitted online. Here we focus on the unique opportunities and challenges this transformation poses for collective intelligence. We bring together interdisciplinary perspectives from industry and academia to identify potential benefits, risks, policy-relevant considerations and open research questions, culminating in a call for a closer examination of how large language models affect humans’ ability to collectively tackle complex problems.
Collective intelligence is the basis for group success and is frequently supported by information technology. Burton et al. argue that large language models are transforming information access and transmission, presenting both opportunities and challenges for collective intelligence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39304760</pmid><doi>10.1038/s41562-024-01959-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0650-822X</orcidid><orcidid>https://orcid.org/0000-0003-1506-0105</orcidid><orcidid>https://orcid.org/0000-0002-1805-9399</orcidid><orcidid>https://orcid.org/0000-0002-1800-6094</orcidid><orcidid>https://orcid.org/0000-0002-9908-9556</orcidid><orcidid>https://orcid.org/0000-0002-1642-8744</orcidid><orcidid>https://orcid.org/0000-0002-8467-9123</orcidid><orcidid>https://orcid.org/0000-0002-4008-8022</orcidid><orcidid>https://orcid.org/0000-0002-3460-0392</orcidid><orcidid>https://orcid.org/0000-0002-6167-4901</orcidid><orcidid>https://orcid.org/0000-0002-6797-2299</orcidid><orcidid>https://orcid.org/0000-0003-2329-6433</orcidid><orcidid>https://orcid.org/0000-0002-1796-4303</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3374 |
ispartof | Nature human behaviour, 2024-09, Vol.8 (9), p.1643-1655 |
issn | 2397-3374 2397-3374 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107505770 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 4014/4045 706/689/522 Behavioral Sciences Biomedical and Life Sciences Cognition Coordination Crowds Experimental Psychology Information technology Intelligence Interdisciplinary aspects Language Language modeling Large language models Life Sciences Markets Microeconomics Neurosciences Personality and Social Psychology Perspective Transformation Wisdom |
title | How large language models can reshape collective intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20large%20language%20models%20can%20reshape%20collective%20intelligence&rft.jtitle=Nature%20human%20behaviour&rft.au=Burton,%20Jason%20W.&rft.date=2024-09-01&rft.volume=8&rft.issue=9&rft.spage=1643&rft.epage=1655&rft.pages=1643-1655&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-024-01959-9&rft_dat=%3Cproquest_cross%3E3108453310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108453310&rft_id=info:pmid/39304760&rfr_iscdi=true |