Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces
In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods h...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-09, Vol.10 (38), p.eadr1099 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 38 |
container_start_page | eadr1099 |
container_title | Science advances |
container_volume | 10 |
creator | Kim, Kyubeen Hong, Jung-Hoon Bae, Kyubin Lee, Kyounghun Lee, Doohyun J Park, Junsu Zhang, Haozhe Sang, Mingyu Ju, Jeong Eun Cho, Young Uk Kang, Kyowon Park, Wonkeun Jung, Suah Lee, Jung Woo Xu, Baoxing Kim, Jongbaeg Yu, Ki Jun |
description | In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control. |
doi_str_mv | 10.1126/sciadv.adr1099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107505636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107505636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</originalsourceid><addsrcrecordid>eNpNkD1P5DAQQC0EYhFsS3lySZPFYydOXCLEARISDdTRxBmzhnwstsPd1vxxctrlhFyMR3rzisfYOYgVgNSX0XpsP1bYBhDGHLATqcoik0VeHf74L9gyxlchBORaF2CO2UIZJeaXn7DPm78pUE_dlrdTwKYjTh3ZFLzFjvt-Qy0Olnga-_El4Ga9zRqM1PI4usRxaPnUpYBp7Qf-h3BvyOLbvLsx8LQORFnrexqiH4fZmdAmP0N-SBQcWopn7MhhF2m5n6fs-ffN0_Vd9vB4e3999ZBZKUXKQLiqqISCBhswYKRVusrLoiJwslFWm4IUWpcbBQhgyFEjtbBApayELtUpu9h5N2F8nyimuvfRUtfhQOMUawWiLEShlZ7R1Q61YYwxkKs3wfcYtjWI-l_7ete-3refD37t3VPTU_sf_y6tvgCDR4Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107505636</pqid></control><display><type>article</type><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</creator><creatorcontrib>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</creatorcontrib><description>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adr1099</identifier><identifier>PMID: 39303034</identifier><language>eng</language><publisher>United States</publisher><subject>Electric Impedance ; Humans ; Nanotubes, Carbon - chemistry ; Skin ; Tomography - instrumentation ; Tomography - methods ; Touch - physiology ; Wearable Electronic Devices</subject><ispartof>Science advances, 2024-09, Vol.10 (38), p.eadr1099</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</cites><orcidid>0009-0003-9998-9882 ; 0000-0003-4434-5871 ; 0000-0002-7425-2871 ; 0009-0001-3832-8103 ; 0000-0002-4593-4793 ; 0000-0002-9741-5098 ; 0000-0002-6892-3069 ; 0000-0002-8520-8999 ; 0009-0007-2158-047X ; 0009-0002-5215-3642 ; 0000-0003-0298-3250 ; 0000-0003-2578-5177 ; 0000-0003-4705-9248 ; 0000-0002-2591-8737 ; 0000-0002-2922-2702 ; 0000-0001-9355-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39303034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyubeen</creatorcontrib><creatorcontrib>Hong, Jung-Hoon</creatorcontrib><creatorcontrib>Bae, Kyubin</creatorcontrib><creatorcontrib>Lee, Kyounghun</creatorcontrib><creatorcontrib>Lee, Doohyun J</creatorcontrib><creatorcontrib>Park, Junsu</creatorcontrib><creatorcontrib>Zhang, Haozhe</creatorcontrib><creatorcontrib>Sang, Mingyu</creatorcontrib><creatorcontrib>Ju, Jeong Eun</creatorcontrib><creatorcontrib>Cho, Young Uk</creatorcontrib><creatorcontrib>Kang, Kyowon</creatorcontrib><creatorcontrib>Park, Wonkeun</creatorcontrib><creatorcontrib>Jung, Suah</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Kim, Jongbaeg</creatorcontrib><creatorcontrib>Yu, Ki Jun</creatorcontrib><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</description><subject>Electric Impedance</subject><subject>Humans</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Skin</subject><subject>Tomography - instrumentation</subject><subject>Tomography - methods</subject><subject>Touch - physiology</subject><subject>Wearable Electronic Devices</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkD1P5DAQQC0EYhFsS3lySZPFYydOXCLEARISDdTRxBmzhnwstsPd1vxxctrlhFyMR3rzisfYOYgVgNSX0XpsP1bYBhDGHLATqcoik0VeHf74L9gyxlchBORaF2CO2UIZJeaXn7DPm78pUE_dlrdTwKYjTh3ZFLzFjvt-Qy0Olnga-_El4Ga9zRqM1PI4usRxaPnUpYBp7Qf-h3BvyOLbvLsx8LQORFnrexqiH4fZmdAmP0N-SBQcWopn7MhhF2m5n6fs-ffN0_Vd9vB4e3999ZBZKUXKQLiqqISCBhswYKRVusrLoiJwslFWm4IUWpcbBQhgyFEjtbBApayELtUpu9h5N2F8nyimuvfRUtfhQOMUawWiLEShlZ7R1Q61YYwxkKs3wfcYtjWI-l_7ete-3refD37t3VPTU_sf_y6tvgCDR4Pw</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Kim, Kyubeen</creator><creator>Hong, Jung-Hoon</creator><creator>Bae, Kyubin</creator><creator>Lee, Kyounghun</creator><creator>Lee, Doohyun J</creator><creator>Park, Junsu</creator><creator>Zhang, Haozhe</creator><creator>Sang, Mingyu</creator><creator>Ju, Jeong Eun</creator><creator>Cho, Young Uk</creator><creator>Kang, Kyowon</creator><creator>Park, Wonkeun</creator><creator>Jung, Suah</creator><creator>Lee, Jung Woo</creator><creator>Xu, Baoxing</creator><creator>Kim, Jongbaeg</creator><creator>Yu, Ki Jun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-9998-9882</orcidid><orcidid>https://orcid.org/0000-0003-4434-5871</orcidid><orcidid>https://orcid.org/0000-0002-7425-2871</orcidid><orcidid>https://orcid.org/0009-0001-3832-8103</orcidid><orcidid>https://orcid.org/0000-0002-4593-4793</orcidid><orcidid>https://orcid.org/0000-0002-9741-5098</orcidid><orcidid>https://orcid.org/0000-0002-6892-3069</orcidid><orcidid>https://orcid.org/0000-0002-8520-8999</orcidid><orcidid>https://orcid.org/0009-0007-2158-047X</orcidid><orcidid>https://orcid.org/0009-0002-5215-3642</orcidid><orcidid>https://orcid.org/0000-0003-0298-3250</orcidid><orcidid>https://orcid.org/0000-0003-2578-5177</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0002-2591-8737</orcidid><orcidid>https://orcid.org/0000-0002-2922-2702</orcidid><orcidid>https://orcid.org/0000-0001-9355-8270</orcidid></search><sort><creationdate>20240920</creationdate><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><author>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric Impedance</topic><topic>Humans</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Skin</topic><topic>Tomography - instrumentation</topic><topic>Tomography - methods</topic><topic>Touch - physiology</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyubeen</creatorcontrib><creatorcontrib>Hong, Jung-Hoon</creatorcontrib><creatorcontrib>Bae, Kyubin</creatorcontrib><creatorcontrib>Lee, Kyounghun</creatorcontrib><creatorcontrib>Lee, Doohyun J</creatorcontrib><creatorcontrib>Park, Junsu</creatorcontrib><creatorcontrib>Zhang, Haozhe</creatorcontrib><creatorcontrib>Sang, Mingyu</creatorcontrib><creatorcontrib>Ju, Jeong Eun</creatorcontrib><creatorcontrib>Cho, Young Uk</creatorcontrib><creatorcontrib>Kang, Kyowon</creatorcontrib><creatorcontrib>Park, Wonkeun</creatorcontrib><creatorcontrib>Jung, Suah</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Kim, Jongbaeg</creatorcontrib><creatorcontrib>Yu, Ki Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyubeen</au><au>Hong, Jung-Hoon</au><au>Bae, Kyubin</au><au>Lee, Kyounghun</au><au>Lee, Doohyun J</au><au>Park, Junsu</au><au>Zhang, Haozhe</au><au>Sang, Mingyu</au><au>Ju, Jeong Eun</au><au>Cho, Young Uk</au><au>Kang, Kyowon</au><au>Park, Wonkeun</au><au>Jung, Suah</au><au>Lee, Jung Woo</au><au>Xu, Baoxing</au><au>Kim, Jongbaeg</au><au>Yu, Ki Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>10</volume><issue>38</issue><spage>eadr1099</spage><pages>eadr1099-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</abstract><cop>United States</cop><pmid>39303034</pmid><doi>10.1126/sciadv.adr1099</doi><orcidid>https://orcid.org/0009-0003-9998-9882</orcidid><orcidid>https://orcid.org/0000-0003-4434-5871</orcidid><orcidid>https://orcid.org/0000-0002-7425-2871</orcidid><orcidid>https://orcid.org/0009-0001-3832-8103</orcidid><orcidid>https://orcid.org/0000-0002-4593-4793</orcidid><orcidid>https://orcid.org/0000-0002-9741-5098</orcidid><orcidid>https://orcid.org/0000-0002-6892-3069</orcidid><orcidid>https://orcid.org/0000-0002-8520-8999</orcidid><orcidid>https://orcid.org/0009-0007-2158-047X</orcidid><orcidid>https://orcid.org/0009-0002-5215-3642</orcidid><orcidid>https://orcid.org/0000-0003-0298-3250</orcidid><orcidid>https://orcid.org/0000-0003-2578-5177</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0002-2591-8737</orcidid><orcidid>https://orcid.org/0000-0002-2922-2702</orcidid><orcidid>https://orcid.org/0000-0001-9355-8270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-09, Vol.10 (38), p.eadr1099 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107505636 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Electric Impedance Humans Nanotubes, Carbon - chemistry Skin Tomography - instrumentation Tomography - methods Touch - physiology Wearable Electronic Devices |
title | Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20durable%20electrical%20impedance%20tomography-based%20soft%20and%20ultrathin%20wearable%20e-skin%20for%20three-dimensional%20tactile%20interfaces&rft.jtitle=Science%20advances&rft.au=Kim,%20Kyubeen&rft.date=2024-09-20&rft.volume=10&rft.issue=38&rft.spage=eadr1099&rft.pages=eadr1099-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adr1099&rft_dat=%3Cproquest_cross%3E3107505636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107505636&rft_id=info:pmid/39303034&rfr_iscdi=true |