Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces

In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-09, Vol.10 (38), p.eadr1099
Hauptverfasser: Kim, Kyubeen, Hong, Jung-Hoon, Bae, Kyubin, Lee, Kyounghun, Lee, Doohyun J, Park, Junsu, Zhang, Haozhe, Sang, Mingyu, Ju, Jeong Eun, Cho, Young Uk, Kang, Kyowon, Park, Wonkeun, Jung, Suah, Lee, Jung Woo, Xu, Baoxing, Kim, Jongbaeg, Yu, Ki Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 38
container_start_page eadr1099
container_title Science advances
container_volume 10
creator Kim, Kyubeen
Hong, Jung-Hoon
Bae, Kyubin
Lee, Kyounghun
Lee, Doohyun J
Park, Junsu
Zhang, Haozhe
Sang, Mingyu
Ju, Jeong Eun
Cho, Young Uk
Kang, Kyowon
Park, Wonkeun
Jung, Suah
Lee, Jung Woo
Xu, Baoxing
Kim, Jongbaeg
Yu, Ki Jun
description In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.
doi_str_mv 10.1126/sciadv.adr1099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107505636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107505636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</originalsourceid><addsrcrecordid>eNpNkD1P5DAQQC0EYhFsS3lySZPFYydOXCLEARISDdTRxBmzhnwstsPd1vxxctrlhFyMR3rzisfYOYgVgNSX0XpsP1bYBhDGHLATqcoik0VeHf74L9gyxlchBORaF2CO2UIZJeaXn7DPm78pUE_dlrdTwKYjTh3ZFLzFjvt-Qy0Olnga-_El4Ga9zRqM1PI4usRxaPnUpYBp7Qf-h3BvyOLbvLsx8LQORFnrexqiH4fZmdAmP0N-SBQcWopn7MhhF2m5n6fs-ffN0_Vd9vB4e3999ZBZKUXKQLiqqISCBhswYKRVusrLoiJwslFWm4IUWpcbBQhgyFEjtbBApayELtUpu9h5N2F8nyimuvfRUtfhQOMUawWiLEShlZ7R1Q61YYwxkKs3wfcYtjWI-l_7ete-3refD37t3VPTU_sf_y6tvgCDR4Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107505636</pqid></control><display><type>article</type><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</creator><creatorcontrib>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</creatorcontrib><description>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects &gt;57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adr1099</identifier><identifier>PMID: 39303034</identifier><language>eng</language><publisher>United States</publisher><subject>Electric Impedance ; Humans ; Nanotubes, Carbon - chemistry ; Skin ; Tomography - instrumentation ; Tomography - methods ; Touch - physiology ; Wearable Electronic Devices</subject><ispartof>Science advances, 2024-09, Vol.10 (38), p.eadr1099</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</cites><orcidid>0009-0003-9998-9882 ; 0000-0003-4434-5871 ; 0000-0002-7425-2871 ; 0009-0001-3832-8103 ; 0000-0002-4593-4793 ; 0000-0002-9741-5098 ; 0000-0002-6892-3069 ; 0000-0002-8520-8999 ; 0009-0007-2158-047X ; 0009-0002-5215-3642 ; 0000-0003-0298-3250 ; 0000-0003-2578-5177 ; 0000-0003-4705-9248 ; 0000-0002-2591-8737 ; 0000-0002-2922-2702 ; 0000-0001-9355-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39303034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyubeen</creatorcontrib><creatorcontrib>Hong, Jung-Hoon</creatorcontrib><creatorcontrib>Bae, Kyubin</creatorcontrib><creatorcontrib>Lee, Kyounghun</creatorcontrib><creatorcontrib>Lee, Doohyun J</creatorcontrib><creatorcontrib>Park, Junsu</creatorcontrib><creatorcontrib>Zhang, Haozhe</creatorcontrib><creatorcontrib>Sang, Mingyu</creatorcontrib><creatorcontrib>Ju, Jeong Eun</creatorcontrib><creatorcontrib>Cho, Young Uk</creatorcontrib><creatorcontrib>Kang, Kyowon</creatorcontrib><creatorcontrib>Park, Wonkeun</creatorcontrib><creatorcontrib>Jung, Suah</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Kim, Jongbaeg</creatorcontrib><creatorcontrib>Yu, Ki Jun</creatorcontrib><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects &gt;57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</description><subject>Electric Impedance</subject><subject>Humans</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Skin</subject><subject>Tomography - instrumentation</subject><subject>Tomography - methods</subject><subject>Touch - physiology</subject><subject>Wearable Electronic Devices</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkD1P5DAQQC0EYhFsS3lySZPFYydOXCLEARISDdTRxBmzhnwstsPd1vxxctrlhFyMR3rzisfYOYgVgNSX0XpsP1bYBhDGHLATqcoik0VeHf74L9gyxlchBORaF2CO2UIZJeaXn7DPm78pUE_dlrdTwKYjTh3ZFLzFjvt-Qy0Olnga-_El4Ga9zRqM1PI4usRxaPnUpYBp7Qf-h3BvyOLbvLsx8LQORFnrexqiH4fZmdAmP0N-SBQcWopn7MhhF2m5n6fs-ffN0_Vd9vB4e3999ZBZKUXKQLiqqISCBhswYKRVusrLoiJwslFWm4IUWpcbBQhgyFEjtbBApayELtUpu9h5N2F8nyimuvfRUtfhQOMUawWiLEShlZ7R1Q61YYwxkKs3wfcYtjWI-l_7ete-3refD37t3VPTU_sf_y6tvgCDR4Pw</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Kim, Kyubeen</creator><creator>Hong, Jung-Hoon</creator><creator>Bae, Kyubin</creator><creator>Lee, Kyounghun</creator><creator>Lee, Doohyun J</creator><creator>Park, Junsu</creator><creator>Zhang, Haozhe</creator><creator>Sang, Mingyu</creator><creator>Ju, Jeong Eun</creator><creator>Cho, Young Uk</creator><creator>Kang, Kyowon</creator><creator>Park, Wonkeun</creator><creator>Jung, Suah</creator><creator>Lee, Jung Woo</creator><creator>Xu, Baoxing</creator><creator>Kim, Jongbaeg</creator><creator>Yu, Ki Jun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-9998-9882</orcidid><orcidid>https://orcid.org/0000-0003-4434-5871</orcidid><orcidid>https://orcid.org/0000-0002-7425-2871</orcidid><orcidid>https://orcid.org/0009-0001-3832-8103</orcidid><orcidid>https://orcid.org/0000-0002-4593-4793</orcidid><orcidid>https://orcid.org/0000-0002-9741-5098</orcidid><orcidid>https://orcid.org/0000-0002-6892-3069</orcidid><orcidid>https://orcid.org/0000-0002-8520-8999</orcidid><orcidid>https://orcid.org/0009-0007-2158-047X</orcidid><orcidid>https://orcid.org/0009-0002-5215-3642</orcidid><orcidid>https://orcid.org/0000-0003-0298-3250</orcidid><orcidid>https://orcid.org/0000-0003-2578-5177</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0002-2591-8737</orcidid><orcidid>https://orcid.org/0000-0002-2922-2702</orcidid><orcidid>https://orcid.org/0000-0001-9355-8270</orcidid></search><sort><creationdate>20240920</creationdate><title>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</title><author>Kim, Kyubeen ; Hong, Jung-Hoon ; Bae, Kyubin ; Lee, Kyounghun ; Lee, Doohyun J ; Park, Junsu ; Zhang, Haozhe ; Sang, Mingyu ; Ju, Jeong Eun ; Cho, Young Uk ; Kang, Kyowon ; Park, Wonkeun ; Jung, Suah ; Lee, Jung Woo ; Xu, Baoxing ; Kim, Jongbaeg ; Yu, Ki Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-10f858031bab19192c3684758e1f2b3c695e3acf4931a119efeb260c1e7280673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric Impedance</topic><topic>Humans</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Skin</topic><topic>Tomography - instrumentation</topic><topic>Tomography - methods</topic><topic>Touch - physiology</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyubeen</creatorcontrib><creatorcontrib>Hong, Jung-Hoon</creatorcontrib><creatorcontrib>Bae, Kyubin</creatorcontrib><creatorcontrib>Lee, Kyounghun</creatorcontrib><creatorcontrib>Lee, Doohyun J</creatorcontrib><creatorcontrib>Park, Junsu</creatorcontrib><creatorcontrib>Zhang, Haozhe</creatorcontrib><creatorcontrib>Sang, Mingyu</creatorcontrib><creatorcontrib>Ju, Jeong Eun</creatorcontrib><creatorcontrib>Cho, Young Uk</creatorcontrib><creatorcontrib>Kang, Kyowon</creatorcontrib><creatorcontrib>Park, Wonkeun</creatorcontrib><creatorcontrib>Jung, Suah</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Xu, Baoxing</creatorcontrib><creatorcontrib>Kim, Jongbaeg</creatorcontrib><creatorcontrib>Yu, Ki Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyubeen</au><au>Hong, Jung-Hoon</au><au>Bae, Kyubin</au><au>Lee, Kyounghun</au><au>Lee, Doohyun J</au><au>Park, Junsu</au><au>Zhang, Haozhe</au><au>Sang, Mingyu</au><au>Ju, Jeong Eun</au><au>Cho, Young Uk</au><au>Kang, Kyowon</au><au>Park, Wonkeun</au><au>Jung, Suah</au><au>Lee, Jung Woo</au><au>Xu, Baoxing</au><au>Kim, Jongbaeg</au><au>Yu, Ki Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>10</volume><issue>38</issue><spage>eadr1099</spage><pages>eadr1099-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects &gt;57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.</abstract><cop>United States</cop><pmid>39303034</pmid><doi>10.1126/sciadv.adr1099</doi><orcidid>https://orcid.org/0009-0003-9998-9882</orcidid><orcidid>https://orcid.org/0000-0003-4434-5871</orcidid><orcidid>https://orcid.org/0000-0002-7425-2871</orcidid><orcidid>https://orcid.org/0009-0001-3832-8103</orcidid><orcidid>https://orcid.org/0000-0002-4593-4793</orcidid><orcidid>https://orcid.org/0000-0002-9741-5098</orcidid><orcidid>https://orcid.org/0000-0002-6892-3069</orcidid><orcidid>https://orcid.org/0000-0002-8520-8999</orcidid><orcidid>https://orcid.org/0009-0007-2158-047X</orcidid><orcidid>https://orcid.org/0009-0002-5215-3642</orcidid><orcidid>https://orcid.org/0000-0003-0298-3250</orcidid><orcidid>https://orcid.org/0000-0003-2578-5177</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0002-2591-8737</orcidid><orcidid>https://orcid.org/0000-0002-2922-2702</orcidid><orcidid>https://orcid.org/0000-0001-9355-8270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-09, Vol.10 (38), p.eadr1099
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_3107505636
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Electric Impedance
Humans
Nanotubes, Carbon - chemistry
Skin
Tomography - instrumentation
Tomography - methods
Touch - physiology
Wearable Electronic Devices
title Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20durable%20electrical%20impedance%20tomography-based%20soft%20and%20ultrathin%20wearable%20e-skin%20for%20three-dimensional%20tactile%20interfaces&rft.jtitle=Science%20advances&rft.au=Kim,%20Kyubeen&rft.date=2024-09-20&rft.volume=10&rft.issue=38&rft.spage=eadr1099&rft.pages=eadr1099-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adr1099&rft_dat=%3Cproquest_cross%3E3107505636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107505636&rft_id=info:pmid/39303034&rfr_iscdi=true