Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes
The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and uns...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Faraday discussions |
container_volume | |
creator | Kevlishvili, Ilia St Michel, Roland G Garrison, Aaron G Toney, Jacob W Adamji, Husain Jia, Haojun Román-Leshkov, Yuriy Kulik, Heather J |
description | The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning. |
doi_str_mv | 10.1039/d4fd00087k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107161889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107161889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-eafb69a98dc0c5d8ca3357952467c5f04dfaf86232bc00ce172f0607cb0ee83</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBCIlsKFD0A-IkTAjhPHPpaU0opKRWrvkeusSyCPEjsIvoDfxoHCYTWzO6ORdhA6p-SGEiZv88jkhBCRvB6gIWU8CuJIisOexzLgPCIDdGLti_dwrx6jAZOMUC7FEH0t4B1atS3qLa6V61pV4lLV205tAe_aRoO1veYarL3oALtnP1U6Xl97eJot18ue3M09qDr3dJUuca6csuAsbgw2Xa1d0dQ-2bWqtkW_4AqcP-im2pXwAfYUHRlVWjjb4witpvfrdBYslg_zdLwIdEhDF4AyGy6VFLkmOs6FVozFiYzDiCc6NiTKjTKChyzcaEI00CQ0hJNEbwiAYCN0-ZvqP3vrwLqsKqyG0n8MTWczRklCORVCeuvVr1W3jbUtmGzXFpVqPzNKsr72bBJNJz-1P3rzxT6321SQ_1v_embfrtB-8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107161889</pqid></control><display><type>article</type><title>Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kevlishvili, Ilia ; St Michel, Roland G ; Garrison, Aaron G ; Toney, Jacob W ; Adamji, Husain ; Jia, Haojun ; Román-Leshkov, Yuriy ; Kulik, Heather J</creator><creatorcontrib>Kevlishvili, Ilia ; St Michel, Roland G ; Garrison, Aaron G ; Toney, Jacob W ; Adamji, Husain ; Jia, Haojun ; Román-Leshkov, Yuriy ; Kulik, Heather J</creatorcontrib><description>The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.</description><identifier>ISSN: 1359-6640</identifier><identifier>ISSN: 1364-5498</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d4fd00087k</identifier><identifier>PMID: 39301698</identifier><language>eng</language><publisher>England</publisher><ispartof>Faraday discussions, 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-eafb69a98dc0c5d8ca3357952467c5f04dfaf86232bc00ce172f0607cb0ee83</cites><orcidid>0000-0001-9342-0191 ; 0000-0003-3058-680X ; 0000-0002-0025-4233 ; 0000-0002-6920-1105 ; 0009-0003-6353-3111 ; 0000-0001-8133-4165 ; 0000-0002-9435-2589 ; 0000-0001-8011-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39301698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kevlishvili, Ilia</creatorcontrib><creatorcontrib>St Michel, Roland G</creatorcontrib><creatorcontrib>Garrison, Aaron G</creatorcontrib><creatorcontrib>Toney, Jacob W</creatorcontrib><creatorcontrib>Adamji, Husain</creatorcontrib><creatorcontrib>Jia, Haojun</creatorcontrib><creatorcontrib>Román-Leshkov, Yuriy</creatorcontrib><creatorcontrib>Kulik, Heather J</creatorcontrib><title>Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.</description><issn>1359-6640</issn><issn>1364-5498</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBCIlsKFD0A-IkTAjhPHPpaU0opKRWrvkeusSyCPEjsIvoDfxoHCYTWzO6ORdhA6p-SGEiZv88jkhBCRvB6gIWU8CuJIisOexzLgPCIDdGLti_dwrx6jAZOMUC7FEH0t4B1atS3qLa6V61pV4lLV205tAe_aRoO1veYarL3oALtnP1U6Xl97eJot18ue3M09qDr3dJUuca6csuAsbgw2Xa1d0dQ-2bWqtkW_4AqcP-im2pXwAfYUHRlVWjjb4witpvfrdBYslg_zdLwIdEhDF4AyGy6VFLkmOs6FVozFiYzDiCc6NiTKjTKChyzcaEI00CQ0hJNEbwiAYCN0-ZvqP3vrwLqsKqyG0n8MTWczRklCORVCeuvVr1W3jbUtmGzXFpVqPzNKsr72bBJNJz-1P3rzxT6321SQ_1v_embfrtB-8w</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Kevlishvili, Ilia</creator><creator>St Michel, Roland G</creator><creator>Garrison, Aaron G</creator><creator>Toney, Jacob W</creator><creator>Adamji, Husain</creator><creator>Jia, Haojun</creator><creator>Román-Leshkov, Yuriy</creator><creator>Kulik, Heather J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9342-0191</orcidid><orcidid>https://orcid.org/0000-0003-3058-680X</orcidid><orcidid>https://orcid.org/0000-0002-0025-4233</orcidid><orcidid>https://orcid.org/0000-0002-6920-1105</orcidid><orcidid>https://orcid.org/0009-0003-6353-3111</orcidid><orcidid>https://orcid.org/0000-0001-8133-4165</orcidid><orcidid>https://orcid.org/0000-0002-9435-2589</orcidid><orcidid>https://orcid.org/0000-0001-8011-2704</orcidid></search><sort><creationdate>20240920</creationdate><title>Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes</title><author>Kevlishvili, Ilia ; St Michel, Roland G ; Garrison, Aaron G ; Toney, Jacob W ; Adamji, Husain ; Jia, Haojun ; Román-Leshkov, Yuriy ; Kulik, Heather J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-eafb69a98dc0c5d8ca3357952467c5f04dfaf86232bc00ce172f0607cb0ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevlishvili, Ilia</creatorcontrib><creatorcontrib>St Michel, Roland G</creatorcontrib><creatorcontrib>Garrison, Aaron G</creatorcontrib><creatorcontrib>Toney, Jacob W</creatorcontrib><creatorcontrib>Adamji, Husain</creatorcontrib><creatorcontrib>Jia, Haojun</creatorcontrib><creatorcontrib>Román-Leshkov, Yuriy</creatorcontrib><creatorcontrib>Kulik, Heather J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevlishvili, Ilia</au><au>St Michel, Roland G</au><au>Garrison, Aaron G</au><au>Toney, Jacob W</au><au>Adamji, Husain</au><au>Jia, Haojun</au><au>Román-Leshkov, Yuriy</au><au>Kulik, Heather J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2024-09-20</date><risdate>2024</risdate><issn>1359-6640</issn><issn>1364-5498</issn><eissn>1364-5498</eissn><abstract>The breadth of transition metal chemical space covered by databases such as the Cambridge Structural Database and the derived computational database tmQM is not conducive to application-specific modeling and the development of structure-property relationships. Here, we employ both supervised and unsupervised natural language processing (NLP) techniques to link experimentally synthesized compounds in the tmQM database to their respective applications. Leveraging NLP models, we curate four distinct datasets: tmCAT for catalysis, tmPHOTO for photophysical activity, tmBIO for biological relevance, and tmSCO for magnetism. Analyzing the chemical substructures within each dataset reveals common chemical motifs in each of the designated applications. We then use these common chemical structures to augment our initial datasets for each application, yielding a total of 21 631 compounds in tmCAT, 4599 in tmPHOTO, 2782 in tmBIO, and 983 in tmSCO. These datasets are expected to accelerate the more targeted computational screening and development of refined structure-property relationships with machine learning.</abstract><cop>England</cop><pmid>39301698</pmid><doi>10.1039/d4fd00087k</doi><orcidid>https://orcid.org/0000-0001-9342-0191</orcidid><orcidid>https://orcid.org/0000-0003-3058-680X</orcidid><orcidid>https://orcid.org/0000-0002-0025-4233</orcidid><orcidid>https://orcid.org/0000-0002-6920-1105</orcidid><orcidid>https://orcid.org/0009-0003-6353-3111</orcidid><orcidid>https://orcid.org/0000-0001-8133-4165</orcidid><orcidid>https://orcid.org/0000-0002-9435-2589</orcidid><orcidid>https://orcid.org/0000-0001-8011-2704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2024-09 |
issn | 1359-6640 1364-5498 1364-5498 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107161889 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20natural%20language%20processing%20to%20curate%20the%20tmCAT,%20tmPHOTO,%20tmBIO,%20and%20tmSCO%20datasets%20of%20functional%20transition%20metal%20complexes&rft.jtitle=Faraday%20discussions&rft.au=Kevlishvili,%20Ilia&rft.date=2024-09-20&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d4fd00087k&rft_dat=%3Cproquest_cross%3E3107161889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107161889&rft_id=info:pmid/39301698&rfr_iscdi=true |