A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system

Purpose Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition‐based techniques, at portable low‐field systems that lack multiple receiver coils. However, existing 2‐π multislice SPEN schemes fail to keep consistent SNRs and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2025-02, Vol.93 (2), p.709-717
Hauptverfasser: Qiu, Yueqi, Chen, Suen, Solomon, Eddy, Wang, Changyue, Zhong, Sijie, Dai, Ke, Chen, Hao, Frydman, Lucio, Zhang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 2
container_start_page 709
container_title Magnetic resonance in medicine
container_volume 93
creator Qiu, Yueqi
Chen, Suen
Solomon, Eddy
Wang, Changyue
Zhong, Sijie
Dai, Ke
Chen, Hao
Frydman, Lucio
Zhang, Zhiyong
description Purpose Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition‐based techniques, at portable low‐field systems that lack multiple receiver coils. However, existing 2‐π multislice SPEN schemes fail to keep consistent SNRs and contrasts with different numbers of slice settings. This work proposes a new multislice SPEN scheme (SPENms) to achieve stable quality imaging in portable low‐field MRI systems. Methods The proposed SPENms includes the insertion of one selective π pulse and one non‐selective π pulse, closely arranged together, before the frequency‐swept π pulse in the original 2D SPEN sequence. Theoretical simulations and experiments on phantoms and human brains were conducted to validate its SNR and contrast performances under different parameters compared to the existing 2‐π multislice SPEN scheme. Results Both simulations and experiments demonstrate the consistent image quality of SPENms with different scanning parameters and targets, as well as good distortion resistance and scan efficiency. Robust diffusion weighted multislice SPEN images of diagnostic value were also highlighted. Conclusion SPENms provides a robust fast echo planar acquisition approach to obtain multislice 2D images with less distortions, consistent SNRs and contrasts at portable low‐field MRI systems.
doi_str_mv 10.1002/mrm.30300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107161827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107161827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-eeb9b7542326d3f7aa9e3dadcb4b945cc09793e04e5f5d3958d9c2761298a14e3</originalsourceid><addsrcrecordid>eNp10M9KHTEUBvBQlHq1XfQFSsBNXYye_JmbyVLEquClIO2mmyGTOaORzGSazHC5Ox_BZ-yTmHq1C8FV4PA7HycfIV8YHDMAftLH_liAAPhAFqzkvOClljtkAUpCIZiWe2Q_pXsA0FrJj2RPaAFMqWpBfp_SAdfUjGMMxt7RLkTaz35yyTuLNI1mcmHCfgzReIqDDa0bbunq5oq6gRqa55NpPFIf1n8fHjuHvqVpk_LKJ7LbGZ_w88t7QH59P_95dllc_7i4Oju9LiyXAgrERjeqlFzwZSs6ZYxG0ZrWNrLRsrQWtNICQWLZla3QZdVqy9WScV0ZJlEckG_b3PyFPzOmqe5dsui9GTDMqRYMFFuyiqtMD9_Q-zDHIV-XlRCV5EutszraKhtDShG7eoyuN3FTM6j_FV7nwuvnwrP9-pI4Nz22_-VrwxmcbMHaedy8n1SvblbbyCcjE4pl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133842699</pqid></control><display><type>article</type><title>A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiu, Yueqi ; Chen, Suen ; Solomon, Eddy ; Wang, Changyue ; Zhong, Sijie ; Dai, Ke ; Chen, Hao ; Frydman, Lucio ; Zhang, Zhiyong</creator><creatorcontrib>Qiu, Yueqi ; Chen, Suen ; Solomon, Eddy ; Wang, Changyue ; Zhong, Sijie ; Dai, Ke ; Chen, Hao ; Frydman, Lucio ; Zhang, Zhiyong</creatorcontrib><description>Purpose Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition‐based techniques, at portable low‐field systems that lack multiple receiver coils. However, existing 2‐π multislice SPEN schemes fail to keep consistent SNRs and contrasts with different numbers of slice settings. This work proposes a new multislice SPEN scheme (SPENms) to achieve stable quality imaging in portable low‐field MRI systems. Methods The proposed SPENms includes the insertion of one selective π pulse and one non‐selective π pulse, closely arranged together, before the frequency‐swept π pulse in the original 2D SPEN sequence. Theoretical simulations and experiments on phantoms and human brains were conducted to validate its SNR and contrast performances under different parameters compared to the existing 2‐π multislice SPEN scheme. Results Both simulations and experiments demonstrate the consistent image quality of SPENms with different scanning parameters and targets, as well as good distortion resistance and scan efficiency. Robust diffusion weighted multislice SPEN images of diagnostic value were also highlighted. Conclusion SPENms provides a robust fast echo planar acquisition approach to obtain multislice 2D images with less distortions, consistent SNRs and contrasts at portable low‐field MRI systems.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30300</identifier><identifier>PMID: 39301778</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Coding ; Computer Simulation ; Diffusion rate ; Distortion ; DWI ; Echo-Planar Imaging - methods ; field inhomogeneity ; Human performance ; Humans ; Image acquisition ; Image contrast ; Image Processing, Computer-Assisted - methods ; Image quality ; low‐field MRI ; Magnetic resonance imaging ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Medical imaging ; multislice SPEN ; Parameter robustness ; Phantoms, Imaging ; Portability ; Reproducibility of Results ; Robustness ; Signal-To-Noise Ratio ; Target acquisition</subject><ispartof>Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.709-717</ispartof><rights>2024 International Society for Magnetic Resonance in Medicine.</rights><rights>2025 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2430-eeb9b7542326d3f7aa9e3dadcb4b945cc09793e04e5f5d3958d9c2761298a14e3</cites><orcidid>0000-0001-8208-3521 ; 0000-0001-9773-7348 ; 0000-0001-9204-4518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39301778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Yueqi</creatorcontrib><creatorcontrib>Chen, Suen</creatorcontrib><creatorcontrib>Solomon, Eddy</creatorcontrib><creatorcontrib>Wang, Changyue</creatorcontrib><creatorcontrib>Zhong, Sijie</creatorcontrib><creatorcontrib>Dai, Ke</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><title>A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition‐based techniques, at portable low‐field systems that lack multiple receiver coils. However, existing 2‐π multislice SPEN schemes fail to keep consistent SNRs and contrasts with different numbers of slice settings. This work proposes a new multislice SPEN scheme (SPENms) to achieve stable quality imaging in portable low‐field MRI systems. Methods The proposed SPENms includes the insertion of one selective π pulse and one non‐selective π pulse, closely arranged together, before the frequency‐swept π pulse in the original 2D SPEN sequence. Theoretical simulations and experiments on phantoms and human brains were conducted to validate its SNR and contrast performances under different parameters compared to the existing 2‐π multislice SPEN scheme. Results Both simulations and experiments demonstrate the consistent image quality of SPENms with different scanning parameters and targets, as well as good distortion resistance and scan efficiency. Robust diffusion weighted multislice SPEN images of diagnostic value were also highlighted. Conclusion SPENms provides a robust fast echo planar acquisition approach to obtain multislice 2D images with less distortions, consistent SNRs and contrasts at portable low‐field MRI systems.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Coding</subject><subject>Computer Simulation</subject><subject>Diffusion rate</subject><subject>Distortion</subject><subject>DWI</subject><subject>Echo-Planar Imaging - methods</subject><subject>field inhomogeneity</subject><subject>Human performance</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>low‐field MRI</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>multislice SPEN</subject><subject>Parameter robustness</subject><subject>Phantoms, Imaging</subject><subject>Portability</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Signal-To-Noise Ratio</subject><subject>Target acquisition</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M9KHTEUBvBQlHq1XfQFSsBNXYye_JmbyVLEquClIO2mmyGTOaORzGSazHC5Ox_BZ-yTmHq1C8FV4PA7HycfIV8YHDMAftLH_liAAPhAFqzkvOClljtkAUpCIZiWe2Q_pXsA0FrJj2RPaAFMqWpBfp_SAdfUjGMMxt7RLkTaz35yyTuLNI1mcmHCfgzReIqDDa0bbunq5oq6gRqa55NpPFIf1n8fHjuHvqVpk_LKJ7LbGZ_w88t7QH59P_95dllc_7i4Oju9LiyXAgrERjeqlFzwZSs6ZYxG0ZrWNrLRsrQWtNICQWLZla3QZdVqy9WScV0ZJlEckG_b3PyFPzOmqe5dsui9GTDMqRYMFFuyiqtMD9_Q-zDHIV-XlRCV5EutszraKhtDShG7eoyuN3FTM6j_FV7nwuvnwrP9-pI4Nz22_-VrwxmcbMHaedy8n1SvblbbyCcjE4pl</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Qiu, Yueqi</creator><creator>Chen, Suen</creator><creator>Solomon, Eddy</creator><creator>Wang, Changyue</creator><creator>Zhong, Sijie</creator><creator>Dai, Ke</creator><creator>Chen, Hao</creator><creator>Frydman, Lucio</creator><creator>Zhang, Zhiyong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid><orcidid>https://orcid.org/0000-0001-9773-7348</orcidid><orcidid>https://orcid.org/0000-0001-9204-4518</orcidid></search><sort><creationdate>202502</creationdate><title>A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system</title><author>Qiu, Yueqi ; Chen, Suen ; Solomon, Eddy ; Wang, Changyue ; Zhong, Sijie ; Dai, Ke ; Chen, Hao ; Frydman, Lucio ; Zhang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-eeb9b7542326d3f7aa9e3dadcb4b945cc09793e04e5f5d3958d9c2761298a14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Coding</topic><topic>Computer Simulation</topic><topic>Diffusion rate</topic><topic>Distortion</topic><topic>DWI</topic><topic>Echo-Planar Imaging - methods</topic><topic>field inhomogeneity</topic><topic>Human performance</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>low‐field MRI</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>multislice SPEN</topic><topic>Parameter robustness</topic><topic>Phantoms, Imaging</topic><topic>Portability</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Signal-To-Noise Ratio</topic><topic>Target acquisition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yueqi</creatorcontrib><creatorcontrib>Chen, Suen</creatorcontrib><creatorcontrib>Solomon, Eddy</creatorcontrib><creatorcontrib>Wang, Changyue</creatorcontrib><creatorcontrib>Zhong, Sijie</creatorcontrib><creatorcontrib>Dai, Ke</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Frydman, Lucio</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yueqi</au><au>Chen, Suen</au><au>Solomon, Eddy</au><au>Wang, Changyue</au><au>Zhong, Sijie</au><au>Dai, Ke</au><au>Chen, Hao</au><au>Frydman, Lucio</au><au>Zhang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2025-02</date><risdate>2025</risdate><volume>93</volume><issue>2</issue><spage>709</spage><epage>717</epage><pages>709-717</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition‐based techniques, at portable low‐field systems that lack multiple receiver coils. However, existing 2‐π multislice SPEN schemes fail to keep consistent SNRs and contrasts with different numbers of slice settings. This work proposes a new multislice SPEN scheme (SPENms) to achieve stable quality imaging in portable low‐field MRI systems. Methods The proposed SPENms includes the insertion of one selective π pulse and one non‐selective π pulse, closely arranged together, before the frequency‐swept π pulse in the original 2D SPEN sequence. Theoretical simulations and experiments on phantoms and human brains were conducted to validate its SNR and contrast performances under different parameters compared to the existing 2‐π multislice SPEN scheme. Results Both simulations and experiments demonstrate the consistent image quality of SPENms with different scanning parameters and targets, as well as good distortion resistance and scan efficiency. Robust diffusion weighted multislice SPEN images of diagnostic value were also highlighted. Conclusion SPENms provides a robust fast echo planar acquisition approach to obtain multislice 2D images with less distortions, consistent SNRs and contrasts at portable low‐field MRI systems.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39301778</pmid><doi>10.1002/mrm.30300</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8208-3521</orcidid><orcidid>https://orcid.org/0000-0001-9773-7348</orcidid><orcidid>https://orcid.org/0000-0001-9204-4518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2025-02, Vol.93 (2), p.709-717
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_proquest_miscellaneous_3107161827
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Brain - diagnostic imaging
Coding
Computer Simulation
Diffusion rate
Distortion
DWI
Echo-Planar Imaging - methods
field inhomogeneity
Human performance
Humans
Image acquisition
Image contrast
Image Processing, Computer-Assisted - methods
Image quality
low‐field MRI
Magnetic resonance imaging
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Medical imaging
multislice SPEN
Parameter robustness
Phantoms, Imaging
Portability
Reproducibility of Results
Robustness
Signal-To-Noise Ratio
Target acquisition
title A new approach for multislice spatiotemporal encoding MRI in a portable low‐field system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20for%20multislice%20spatiotemporal%20encoding%20MRI%20in%20a%20portable%20low%E2%80%90field%20system&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Qiu,%20Yueqi&rft.date=2025-02&rft.volume=93&rft.issue=2&rft.spage=709&rft.epage=717&rft.pages=709-717&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30300&rft_dat=%3Cproquest_cross%3E3107161827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133842699&rft_id=info:pmid/39301778&rfr_iscdi=true