Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry
Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Faraday discussions |
container_volume | |
creator | Ruscic, Branko Bross, David H |
description | Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol
for gas phase glycine, -528.37 ± 0.20 kJ mol
for solid α-glycine, -528.05 ± 0.22 kJ mol
for β-glycine, -528.64 ± 0.23 kJ mol
for γ-glycine, -514.22 ± 0.20 kJ mol
for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol
for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented. |
doi_str_mv | 10.1039/d4fd00110a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107159079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107159079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-eaaff36fc5525a90c1029731f872b1de460f0649ffb4b61d48113f6705d131653</originalsourceid><addsrcrecordid>eNplkU1P3DAQhq0K1N0CF35A5SNCSplZO866t9UCbSWkXrbnyHHGu6FOsrUTID-n_5SkfAjU04w0z7zv4WHsFOELgtAXpXQlACKYD2yOQskklXp5MO2pTpSSMGOfYrwFADVeP7KZ0AJgKeSc_V1Z2wfTETdNyQP5yhSeeLejULd2R3UVuzDwYuCl6cwIGT_EKvLWcdvWe08Pb1lrPG-ou2_D78j7WDVbvrJddUd88x7aTC3x6_TLrYk05W39YKvmv-5jduiMj3TyPI_Yr-urzfp7cvPz24_16iaxmKkuIWOcE8rZNF2kRoNFWOhMoFtmiwJLkgocKKmdK2ShsJRLROFUBmmJAlUqjtjZU-4-tH96il0-9lvy3jTU9jEXCBmmGjI9oudPqA1tjIFcvg9VbcKQI-STkvxSXl_-U7Ia4c_PuX1RU_mKvjgQjwWfiiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107159079</pqid></control><display><type>article</type><title>Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ruscic, Branko ; Bross, David H</creator><creatorcontrib>Ruscic, Branko ; Bross, David H</creatorcontrib><description>Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol
for gas phase glycine, -528.37 ± 0.20 kJ mol
for solid α-glycine, -528.05 ± 0.22 kJ mol
for β-glycine, -528.64 ± 0.23 kJ mol
for γ-glycine, -514.22 ± 0.20 kJ mol
for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol
for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented.</description><identifier>ISSN: 1359-6640</identifier><identifier>ISSN: 1364-5498</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d4fd00110a</identifier><identifier>PMID: 39300834</identifier><language>eng</language><publisher>England</publisher><ispartof>Faraday discussions, 2024-09</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-eaaff36fc5525a90c1029731f872b1de460f0649ffb4b61d48113f6705d131653</cites><orcidid>0000-0002-8218-0249 ; 0000-0002-4372-6990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39300834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Bross, David H</creatorcontrib><title>Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol
for gas phase glycine, -528.37 ± 0.20 kJ mol
for solid α-glycine, -528.05 ± 0.22 kJ mol
for β-glycine, -528.64 ± 0.23 kJ mol
for γ-glycine, -514.22 ± 0.20 kJ mol
for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol
for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented.</description><issn>1359-6640</issn><issn>1364-5498</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkU1P3DAQhq0K1N0CF35A5SNCSplZO866t9UCbSWkXrbnyHHGu6FOsrUTID-n_5SkfAjU04w0z7zv4WHsFOELgtAXpXQlACKYD2yOQskklXp5MO2pTpSSMGOfYrwFADVeP7KZ0AJgKeSc_V1Z2wfTETdNyQP5yhSeeLejULd2R3UVuzDwYuCl6cwIGT_EKvLWcdvWe08Pb1lrPG-ou2_D78j7WDVbvrJddUd88x7aTC3x6_TLrYk05W39YKvmv-5jduiMj3TyPI_Yr-urzfp7cvPz24_16iaxmKkuIWOcE8rZNF2kRoNFWOhMoFtmiwJLkgocKKmdK2ShsJRLROFUBmmJAlUqjtjZU-4-tH96il0-9lvy3jTU9jEXCBmmGjI9oudPqA1tjIFcvg9VbcKQI-STkvxSXl_-U7Ia4c_PuX1RU_mKvjgQjwWfiiM</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Ruscic, Branko</creator><creator>Bross, David H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8218-0249</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid></search><sort><creationdate>20240920</creationdate><title>Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry</title><author>Ruscic, Branko ; Bross, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-eaaff36fc5525a90c1029731f872b1de460f0649ffb4b61d48113f6705d131653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Bross, David H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruscic, Branko</au><au>Bross, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2024-09-20</date><risdate>2024</risdate><issn>1359-6640</issn><issn>1364-5498</issn><eissn>1364-5498</eissn><abstract>Active Thermochemical Tables (ATcT) were successfully used to resolve the existing inconsistencies related to the thermochemistry of glycine, based on statistically analyzing and solving a thermochemical network that includes >3350 chemical species interconnected by nearly 35 000 thermochemically-relevant determinations from experiment and high-level theory. The current ATcT results for the 298.15 K enthalpies of formation are -394.70 ± 0.55 kJ mol
for gas phase glycine, -528.37 ± 0.20 kJ mol
for solid α-glycine, -528.05 ± 0.22 kJ mol
for β-glycine, -528.64 ± 0.23 kJ mol
for γ-glycine, -514.22 ± 0.20 kJ mol
for aqueous undissociated glycine, and -470.09 ± 0.20 kJ mol
for fully dissociated aqueous glycine at infinite dilution. In addition, a new set of thermophysical properties of gas phase glycine was obtained from a fully corrected nonrigid rotor anharmonic oscillator (NRRAO) partition function, which includes all conformers. Corresponding sets of thermophysical properties of α-, β-, and γ-glycine are also presented.</abstract><cop>England</cop><pmid>39300834</pmid><doi>10.1039/d4fd00110a</doi><orcidid>https://orcid.org/0000-0002-8218-0249</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2024-09 |
issn | 1359-6640 1364-5498 1364-5498 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107159079 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20reliable%20thermochemistry%20by%20data%20analysis%20of%20complex%20thermochemical%20networks%20using%20Active%20Thermochemical%20Tables:%20the%20case%20of%20glycine%20thermochemistry&rft.jtitle=Faraday%20discussions&rft.au=Ruscic,%20Branko&rft.date=2024-09-20&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d4fd00110a&rft_dat=%3Cproquest_cross%3E3107159079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107159079&rft_id=info:pmid/39300834&rfr_iscdi=true |