Advancing 3-Dimensional Printed Burr Hole and Craniotomy Models for Neurosurgical Simulation Through Multimaterial Methods
Three-dimensional (3D) printing technology presents a promising avenue for the development of affordable neurosurgical simulation models, addressing many challenges related to the use of cadavers, animal models, and direct patient engagement. The aim of this study is to introduce and evaluate a new...
Gespeichert in:
Veröffentlicht in: | World neurosurgery 2024-12, Vol.192, p.e139-e154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional (3D) printing technology presents a promising avenue for the development of affordable neurosurgical simulation models, addressing many challenges related to the use of cadavers, animal models, and direct patient engagement. The aim of this study is to introduce and evaluate a new high-fidelity neurosurgical simulation model targeted for both burr hole and craniotomy procedures.
12 different 3D-printed skull models were manufactured using 5 different materials (polyether ether ketone, White Resin, Rigid 10K, BoneSTN, and SkullSTN) from 3 different 3D print processes (fused filament fabrication, stereolithography [SLA], and material jetting). Six consultant neurosurgeons conducted burr holes and craniotomies on each sample while blinded to these manufacturing details. Participants completed a survey based on the qualities of the models, including mechanical performance, visual appearance, interior feeling, exterior feeling, sound, overall quality, and recommendations for training purposes based on their prior experience completing these procedures on human skulls.
This study found that the multimaterial SLA-printed models consisting of White Resin for the outer table and Rigid 10K for the diploe and inner table were successful in replicating a human skull for burr hole and craniotomy simulation. This was followed by the porous General BoneSTN preset material on a Stratasys J750 Digital Anatomy Printer.
The findings indicate that widely accessible and economical desktop SLA 3D printers can provide an effective solution in neurosurgical training, thus promoting their integration in hospitals. |
---|---|
ISSN: | 1878-8750 1878-8769 1878-8769 |
DOI: | 10.1016/j.wneu.2024.09.057 |