Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration
Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influen...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-12, Vol.954, p.176241, Article 176241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 176241 |
container_title | The Science of the total environment |
container_volume | 954 |
creator | Xia, Heng Tang, Jian Aljerf, Loai Chen, Jiakun |
description | Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.
[Display omitted] |
doi_str_mv | 10.1016/j.scitotenv.2024.176241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107157663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969724063976</els_id><sourcerecordid>3107157663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-3229c7b01d6386e5f155c4f1f71aa2326d241ebe726807628219263aebfa0d483</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi3UCraUv9D62Eu2_kj8wW2FSlsJiQucLa89gVkl9jZOlu6_J8tSrnQuc3lm3nnnJeQrZ0vOuPq-WZaAYx4h7ZaCiXrJtRI1PyELbrStOBPqA1kwVpvKKqvPyKdSNmwubfgpOZNWWCuZWRB_n3aAHaYHGjH_xUTjPvkeQ7mkK_r0mDuotkMOUAot2E-dHzEnWsYp7mluaT8lDLj1HS25w0iffBmBYgqYYHhhP5OPre8KXLz2c3J__ePu6ld1c_vz99XqpgrCsLGSQtig14xHJY2CpuVNE-qWt5p7L6RQcfYHa9BCGTabNYJboaSHdetZrI08J9-Oe-dz_0xQRtdjCdB1PkGeipO8qUXTaFv_B8o0b7RSckb1EQ1DLmWA1m0H7P2wd5y5QxRu496icIco3DGKefLLq8i07iG-zf37_QysjgDMX9khDIdFkAJEHCCMLmZ8V-QZOtGfTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107157663</pqid></control><display><type>article</type><title>Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xia, Heng ; Tang, Jian ; Aljerf, Loai ; Chen, Jiakun</creator><creatorcontrib>Xia, Heng ; Tang, Jian ; Aljerf, Loai ; Chen, Jiakun</creatorcontrib><description>Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.
[Display omitted]</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.176241</identifier><identifier>PMID: 39299308</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>activated carbon ; adsorption ; combustion ; computer simulation ; dioxins ; Dioxins (DXN) ; environment ; evolution ; Generation, adsorption and emission ; Mechanism model ; municipal solid waste ; Municipal solid waste incineration (MSWI) ; Numerical simulation model ; pyrolysis ; simulation models ; waste incineration</subject><ispartof>The Science of the total environment, 2024-12, Vol.954, p.176241, Article 176241</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-3229c7b01d6386e5f155c4f1f71aa2326d241ebe726807628219263aebfa0d483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969724063976$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39299308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Heng</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Aljerf, Loai</creatorcontrib><creatorcontrib>Chen, Jiakun</creatorcontrib><title>Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.
[Display omitted]</description><subject>activated carbon</subject><subject>adsorption</subject><subject>combustion</subject><subject>computer simulation</subject><subject>dioxins</subject><subject>Dioxins (DXN)</subject><subject>environment</subject><subject>evolution</subject><subject>Generation, adsorption and emission</subject><subject>Mechanism model</subject><subject>municipal solid waste</subject><subject>Municipal solid waste incineration (MSWI)</subject><subject>Numerical simulation model</subject><subject>pyrolysis</subject><subject>simulation models</subject><subject>waste incineration</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQhi3UCraUv9D62Eu2_kj8wW2FSlsJiQucLa89gVkl9jZOlu6_J8tSrnQuc3lm3nnnJeQrZ0vOuPq-WZaAYx4h7ZaCiXrJtRI1PyELbrStOBPqA1kwVpvKKqvPyKdSNmwubfgpOZNWWCuZWRB_n3aAHaYHGjH_xUTjPvkeQ7mkK_r0mDuotkMOUAot2E-dHzEnWsYp7mluaT8lDLj1HS25w0iffBmBYgqYYHhhP5OPre8KXLz2c3J__ePu6ld1c_vz99XqpgrCsLGSQtig14xHJY2CpuVNE-qWt5p7L6RQcfYHa9BCGTabNYJboaSHdetZrI08J9-Oe-dz_0xQRtdjCdB1PkGeipO8qUXTaFv_B8o0b7RSckb1EQ1DLmWA1m0H7P2wd5y5QxRu496icIco3DGKefLLq8i07iG-zf37_QysjgDMX9khDIdFkAJEHCCMLmZ8V-QZOtGfTw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Xia, Heng</creator><creator>Tang, Jian</creator><creator>Aljerf, Loai</creator><creator>Chen, Jiakun</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241201</creationdate><title>Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration</title><author>Xia, Heng ; Tang, Jian ; Aljerf, Loai ; Chen, Jiakun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-3229c7b01d6386e5f155c4f1f71aa2326d241ebe726807628219263aebfa0d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>activated carbon</topic><topic>adsorption</topic><topic>combustion</topic><topic>computer simulation</topic><topic>dioxins</topic><topic>Dioxins (DXN)</topic><topic>environment</topic><topic>evolution</topic><topic>Generation, adsorption and emission</topic><topic>Mechanism model</topic><topic>municipal solid waste</topic><topic>Municipal solid waste incineration (MSWI)</topic><topic>Numerical simulation model</topic><topic>pyrolysis</topic><topic>simulation models</topic><topic>waste incineration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Heng</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Aljerf, Loai</creatorcontrib><creatorcontrib>Chen, Jiakun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Heng</au><au>Tang, Jian</au><au>Aljerf, Loai</au><au>Chen, Jiakun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>954</volume><spage>176241</spage><pages>176241-</pages><artnum>176241</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39299308</pmid><doi>10.1016/j.scitotenv.2024.176241</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2024-12, Vol.954, p.176241, Article 176241 |
issn | 0048-9697 1879-1026 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107157663 |
source | Elsevier ScienceDirect Journals Complete |
subjects | activated carbon adsorption combustion computer simulation dioxins Dioxins (DXN) environment evolution Generation, adsorption and emission Mechanism model municipal solid waste Municipal solid waste incineration (MSWI) Numerical simulation model pyrolysis simulation models waste incineration |
title | Unveiling dioxin dynamics: A whole-process simulation study of municipal solid waste incineration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20dioxin%20dynamics:%20A%20whole-process%20simulation%20study%20of%20municipal%20solid%20waste%20incineration&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Xia,%20Heng&rft.date=2024-12-01&rft.volume=954&rft.spage=176241&rft.pages=176241-&rft.artnum=176241&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.176241&rft_dat=%3Cproquest_cross%3E3107157663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107157663&rft_id=info:pmid/39299308&rft_els_id=S0048969724063976&rfr_iscdi=true |