Simulation of murine retinal hemodynamics in response to tail suspension

The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-11, Vol.182, p.109148, Article 109148
Hauptverfasser: Caddy, Harrison T., Fujino, Mitsunori, Vahabli, Ebrahim, Voigt, Valentina, Kelsey, Lachlan J., Dilley, Rodney J., Carvalho, Livia S., Takahashi, Satoru, Green, Daniel J., Doyle, Barry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109148
container_title Computers in biology and medicine
container_volume 182
creator Caddy, Harrison T.
Fujino, Mitsunori
Vahabli, Ebrahim
Voigt, Valentina
Kelsey, Lachlan J.
Dilley, Rodney J.
Carvalho, Livia S.
Takahashi, Satoru
Green, Daniel J.
Doyle, Barry J.
description The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (
doi_str_mv 10.1016/j.compbiomed.2024.109148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107157148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524012332</els_id><sourcerecordid>3125996376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1923-42ec81f5120dc6bf9ed2df90cb57a066b59c790a895493531e48b25407d110233</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpabZp_0IR5JKLt6MvWzomIWkKgR7anoUsj6kWW3IkO5B_Xy2bUOilp4GZ551hHkIogz0D1n457H2alz6kGYc9By5r2zCp35Ad051pQAn5luwAGDRSc3VGPpRyAAAJAt6TM2G40VqLHbn_EeZtcmtIkaaRzlsOEWnGNUQ30d84p-E5ujn4QkOs_bKkWJCuia4uTLRsZcFYavojeTe6qeCnl3pOft3d_ry5bx6-f_12c_XQeGa4aCRHr9moGIfBt_1ocODDaMD3qnPQtr0yvjPgtFHSCCUYSt1zJaEbGAMuxDm5PO1dcnrcsKx2DsXjNLmIaStWMOiY6qqMil78gx7SlutfR4orY1rRtZXSJ8rnVErG0S45zC4_Wwb2aNse7F_b9mjbnmzX6OeXA1t_nL0GX_VW4PoEYDXyFDDb4gNGj0PI6Fc7pPD_K38AxUeUZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125996376</pqid></control><display><type>article</type><title>Simulation of murine retinal hemodynamics in response to tail suspension</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Caddy, Harrison T. ; Fujino, Mitsunori ; Vahabli, Ebrahim ; Voigt, Valentina ; Kelsey, Lachlan J. ; Dilley, Rodney J. ; Carvalho, Livia S. ; Takahashi, Satoru ; Green, Daniel J. ; Doyle, Barry J.</creator><creatorcontrib>Caddy, Harrison T. ; Fujino, Mitsunori ; Vahabli, Ebrahim ; Voigt, Valentina ; Kelsey, Lachlan J. ; Dilley, Rodney J. ; Carvalho, Livia S. ; Takahashi, Satoru ; Green, Daniel J. ; Doyle, Barry J.</creatorcontrib><description>The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (&lt;10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P &lt; 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (&lt;10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (&lt;20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered. [Display omitted] •Investigated retinal endothelial dysfunction in control and tail suspended mice.•Custom workflow combined confocal imaging, 3D model generation and fluid simulation.•Retinal endothelial cell death varied in tail suspended mice compared to controls.•Shear stress and pressure higher in small retinal vessels of tail suspended mice.•Emulated microgravity hemodynamics may be linked to endothelial dysfunction.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109148</identifier><identifier>PMID: 39298883</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aerospace environments ; Animals ; Blood flow ; Blood pressure ; Boundary conditions ; Capillary flow ; Capillary pressure ; Cell death ; Computational fluid dynamics ; Computer Simulation ; Edema ; Endothelial cells ; Experiments ; Flow distribution ; Fluid flow ; Fluid pressure ; Hemodynamics ; Hemodynamics - physiology ; Hindlimb Suspension - physiology ; Male ; Mice ; Mice, Inbred C57BL ; Microgravity ; Mouse ; Pressure effects ; Radiation ; Retina ; Retina - physiology ; Retinal Vessels - physiology ; Rodents ; SANS ; Simulation ; Space flight ; Tail suspension ; Veins &amp; arteries ; Vessels ; Wall shear stresses ; Weightlessness ; Workflow</subject><ispartof>Computers in biology and medicine, 2024-11, Vol.182, p.109148, Article 109148</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1923-42ec81f5120dc6bf9ed2df90cb57a066b59c790a895493531e48b25407d110233</cites><orcidid>0000-0003-4923-2796 ; 0000-0003-3226-2921 ; 0000-0002-3151-507X ; 0000-0003-0147-8113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482524012332$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39298883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caddy, Harrison T.</creatorcontrib><creatorcontrib>Fujino, Mitsunori</creatorcontrib><creatorcontrib>Vahabli, Ebrahim</creatorcontrib><creatorcontrib>Voigt, Valentina</creatorcontrib><creatorcontrib>Kelsey, Lachlan J.</creatorcontrib><creatorcontrib>Dilley, Rodney J.</creatorcontrib><creatorcontrib>Carvalho, Livia S.</creatorcontrib><creatorcontrib>Takahashi, Satoru</creatorcontrib><creatorcontrib>Green, Daniel J.</creatorcontrib><creatorcontrib>Doyle, Barry J.</creatorcontrib><title>Simulation of murine retinal hemodynamics in response to tail suspension</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (&lt;10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P &lt; 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (&lt;10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (&lt;20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered. [Display omitted] •Investigated retinal endothelial dysfunction in control and tail suspended mice.•Custom workflow combined confocal imaging, 3D model generation and fluid simulation.•Retinal endothelial cell death varied in tail suspended mice compared to controls.•Shear stress and pressure higher in small retinal vessels of tail suspended mice.•Emulated microgravity hemodynamics may be linked to endothelial dysfunction.</description><subject>Aerospace environments</subject><subject>Animals</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Boundary conditions</subject><subject>Capillary flow</subject><subject>Capillary pressure</subject><subject>Cell death</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Experiments</subject><subject>Flow distribution</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Hindlimb Suspension - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microgravity</subject><subject>Mouse</subject><subject>Pressure effects</subject><subject>Radiation</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>Retinal Vessels - physiology</subject><subject>Rodents</subject><subject>SANS</subject><subject>Simulation</subject><subject>Space flight</subject><subject>Tail suspension</subject><subject>Veins &amp; arteries</subject><subject>Vessels</subject><subject>Wall shear stresses</subject><subject>Weightlessness</subject><subject>Workflow</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAQhkVpabZp_0IR5JKLt6MvWzomIWkKgR7anoUsj6kWW3IkO5B_Xy2bUOilp4GZ551hHkIogz0D1n457H2alz6kGYc9By5r2zCp35Ad051pQAn5luwAGDRSc3VGPpRyAAAJAt6TM2G40VqLHbn_EeZtcmtIkaaRzlsOEWnGNUQ30d84p-E5ujn4QkOs_bKkWJCuia4uTLRsZcFYavojeTe6qeCnl3pOft3d_ry5bx6-f_12c_XQeGa4aCRHr9moGIfBt_1ocODDaMD3qnPQtr0yvjPgtFHSCCUYSt1zJaEbGAMuxDm5PO1dcnrcsKx2DsXjNLmIaStWMOiY6qqMil78gx7SlutfR4orY1rRtZXSJ8rnVErG0S45zC4_Wwb2aNse7F_b9mjbnmzX6OeXA1t_nL0GX_VW4PoEYDXyFDDb4gNGj0PI6Fc7pPD_K38AxUeUZg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Caddy, Harrison T.</creator><creator>Fujino, Mitsunori</creator><creator>Vahabli, Ebrahim</creator><creator>Voigt, Valentina</creator><creator>Kelsey, Lachlan J.</creator><creator>Dilley, Rodney J.</creator><creator>Carvalho, Livia S.</creator><creator>Takahashi, Satoru</creator><creator>Green, Daniel J.</creator><creator>Doyle, Barry J.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4923-2796</orcidid><orcidid>https://orcid.org/0000-0003-3226-2921</orcidid><orcidid>https://orcid.org/0000-0002-3151-507X</orcidid><orcidid>https://orcid.org/0000-0003-0147-8113</orcidid></search><sort><creationdate>202411</creationdate><title>Simulation of murine retinal hemodynamics in response to tail suspension</title><author>Caddy, Harrison T. ; Fujino, Mitsunori ; Vahabli, Ebrahim ; Voigt, Valentina ; Kelsey, Lachlan J. ; Dilley, Rodney J. ; Carvalho, Livia S. ; Takahashi, Satoru ; Green, Daniel J. ; Doyle, Barry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1923-42ec81f5120dc6bf9ed2df90cb57a066b59c790a895493531e48b25407d110233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace environments</topic><topic>Animals</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Boundary conditions</topic><topic>Capillary flow</topic><topic>Capillary pressure</topic><topic>Cell death</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Experiments</topic><topic>Flow distribution</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Hindlimb Suspension - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microgravity</topic><topic>Mouse</topic><topic>Pressure effects</topic><topic>Radiation</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>Retinal Vessels - physiology</topic><topic>Rodents</topic><topic>SANS</topic><topic>Simulation</topic><topic>Space flight</topic><topic>Tail suspension</topic><topic>Veins &amp; arteries</topic><topic>Vessels</topic><topic>Wall shear stresses</topic><topic>Weightlessness</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caddy, Harrison T.</creatorcontrib><creatorcontrib>Fujino, Mitsunori</creatorcontrib><creatorcontrib>Vahabli, Ebrahim</creatorcontrib><creatorcontrib>Voigt, Valentina</creatorcontrib><creatorcontrib>Kelsey, Lachlan J.</creatorcontrib><creatorcontrib>Dilley, Rodney J.</creatorcontrib><creatorcontrib>Carvalho, Livia S.</creatorcontrib><creatorcontrib>Takahashi, Satoru</creatorcontrib><creatorcontrib>Green, Daniel J.</creatorcontrib><creatorcontrib>Doyle, Barry J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caddy, Harrison T.</au><au>Fujino, Mitsunori</au><au>Vahabli, Ebrahim</au><au>Voigt, Valentina</au><au>Kelsey, Lachlan J.</au><au>Dilley, Rodney J.</au><au>Carvalho, Livia S.</au><au>Takahashi, Satoru</au><au>Green, Daniel J.</au><au>Doyle, Barry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of murine retinal hemodynamics in response to tail suspension</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-11</date><risdate>2024</risdate><volume>182</volume><spage>109148</spage><pages>109148-</pages><artnum>109148</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (&lt;10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P &lt; 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (&lt;10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (&lt;20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered. [Display omitted] •Investigated retinal endothelial dysfunction in control and tail suspended mice.•Custom workflow combined confocal imaging, 3D model generation and fluid simulation.•Retinal endothelial cell death varied in tail suspended mice compared to controls.•Shear stress and pressure higher in small retinal vessels of tail suspended mice.•Emulated microgravity hemodynamics may be linked to endothelial dysfunction.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39298883</pmid><doi>10.1016/j.compbiomed.2024.109148</doi><orcidid>https://orcid.org/0000-0003-4923-2796</orcidid><orcidid>https://orcid.org/0000-0003-3226-2921</orcidid><orcidid>https://orcid.org/0000-0002-3151-507X</orcidid><orcidid>https://orcid.org/0000-0003-0147-8113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-11, Vol.182, p.109148, Article 109148
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3107157148
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Aerospace environments
Animals
Blood flow
Blood pressure
Boundary conditions
Capillary flow
Capillary pressure
Cell death
Computational fluid dynamics
Computer Simulation
Edema
Endothelial cells
Experiments
Flow distribution
Fluid flow
Fluid pressure
Hemodynamics
Hemodynamics - physiology
Hindlimb Suspension - physiology
Male
Mice
Mice, Inbred C57BL
Microgravity
Mouse
Pressure effects
Radiation
Retina
Retina - physiology
Retinal Vessels - physiology
Rodents
SANS
Simulation
Space flight
Tail suspension
Veins & arteries
Vessels
Wall shear stresses
Weightlessness
Workflow
title Simulation of murine retinal hemodynamics in response to tail suspension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20murine%20retinal%20hemodynamics%20in%20response%20to%20tail%20suspension&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Caddy,%20Harrison%20T.&rft.date=2024-11&rft.volume=182&rft.spage=109148&rft.pages=109148-&rft.artnum=109148&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109148&rft_dat=%3Cproquest_cross%3E3125996376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125996376&rft_id=info:pmid/39298883&rft_els_id=S0010482524012332&rfr_iscdi=true