Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries
[Display omitted] Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batte...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-01, Vol.678 (Pt C), p.210-226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | Pt C |
container_start_page | 210 |
container_title | Journal of colloid and interface science |
container_volume | 678 |
creator | Wei, Zhen Sarwar, Shatila Zhang, Xinyu Wang, Ruigang |
description | [Display omitted]
Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batteries. However, the sluggish redox kinetics and formidable dissolution of polysulfides lead to poor sulfur utilization, serious polarization issues, and cyclic instability. Herein, sulfiphilic few-layer MoSSe nanoflake decorated on graphene (MoSSe@graphene), a two-dimensional and catalytically active hetero-structure composite, was prepared through a facile microwave method, which was used as a conceptually new sulfur host and served as an interfacial kinetic accelerator for LSBs. Specifically, this sulfiphilic MoSSe nanoflake not only strongly interacts with soluble polysulfides but also dynamically promotes polysulfide redox reactions. In addition, the 2D graphene nanosheets can provide an extra physical barrier to mitigate the diffusion of lithium polysulfides and enable much more uniform sulfur distribution, thus dramatically inhibiting polysulfides shuttling meanwhile accelerating sulfur conversion reactions. As a result, the cells with MoSSe@graphene nanohybrid achieved a superior rate performance (1091 mAh/g at 1C) and an ultralow decaying rate of 0.040 % per cycle after 1000 cycles at 1C. |
doi_str_mv | 10.1016/j.jcis.2024.09.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3106732554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724021064</els_id><sourcerecordid>3106732554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-2b6e0eba52b883ac5c168d3cca66fce856384f518b74c28dd259d9b5250d6f663</originalsourceid><addsrcrecordid>eNp9kM2O0zAURq0RiCkDLzAL5CWbBP_ETiyxAI2YAamIRZm15dg3HVdJXHzdor49qTqwZHU35zvSPYTcclZzxvWHXb3zEWvBRFMzU7OmuyIrzoyqWs7kC7JiTPDKtKa9Jq8Rd4xxrpR5Ra6lEUZKrVYkP44lu8FhoVP0Of12R6B4mssTYESaBvo9bTbwiW6z2z_BDNSnaZ8wFkB6jI6Ggxupm2OaaVgm25kOKdMxzdvKn_zo-hHoOlYb2rtSIEfAN-Tl4EaEt8_3hjzef_l597Va_3j4dvd5XXkh21KJXgOD3inRd510XnmuuyC9d1oPHjqlZdcMind923jRhSCUCaZXQrGgB63lDXl_8e5z-nUALHaK6GEc3QzpgFZyplsplGoWVFzQpQBihsHuc5xcPlnO7Lm13dlza3tubZmxS-tl9O7Zf-gnCP8mf-MuwMcLAMuXxwjZoo8wewgxgy82pPg__x9bfJGe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106732554</pqid></control><display><type>article</type><title>Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wei, Zhen ; Sarwar, Shatila ; Zhang, Xinyu ; Wang, Ruigang</creator><creatorcontrib>Wei, Zhen ; Sarwar, Shatila ; Zhang, Xinyu ; Wang, Ruigang</creatorcontrib><description>[Display omitted]
Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batteries. However, the sluggish redox kinetics and formidable dissolution of polysulfides lead to poor sulfur utilization, serious polarization issues, and cyclic instability. Herein, sulfiphilic few-layer MoSSe nanoflake decorated on graphene (MoSSe@graphene), a two-dimensional and catalytically active hetero-structure composite, was prepared through a facile microwave method, which was used as a conceptually new sulfur host and served as an interfacial kinetic accelerator for LSBs. Specifically, this sulfiphilic MoSSe nanoflake not only strongly interacts with soluble polysulfides but also dynamically promotes polysulfide redox reactions. In addition, the 2D graphene nanosheets can provide an extra physical barrier to mitigate the diffusion of lithium polysulfides and enable much more uniform sulfur distribution, thus dramatically inhibiting polysulfides shuttling meanwhile accelerating sulfur conversion reactions. As a result, the cells with MoSSe@graphene nanohybrid achieved a superior rate performance (1091 mAh/g at 1C) and an ultralow decaying rate of 0.040 % per cycle after 1000 cycles at 1C.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.09.048</identifier><identifier>PMID: 39293365</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Li-S batteries ; Nanohybrid engineering ; Sulfiphilicity-lithiophilicity ; Transition-metal dichalcogenides ; Ultrafast microwave synthesis</subject><ispartof>Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.210-226</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-2b6e0eba52b883ac5c168d3cca66fce856384f518b74c28dd259d9b5250d6f663</cites><orcidid>0000-0002-0678-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.09.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39293365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Sarwar, Shatila</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><title>Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batteries. However, the sluggish redox kinetics and formidable dissolution of polysulfides lead to poor sulfur utilization, serious polarization issues, and cyclic instability. Herein, sulfiphilic few-layer MoSSe nanoflake decorated on graphene (MoSSe@graphene), a two-dimensional and catalytically active hetero-structure composite, was prepared through a facile microwave method, which was used as a conceptually new sulfur host and served as an interfacial kinetic accelerator for LSBs. Specifically, this sulfiphilic MoSSe nanoflake not only strongly interacts with soluble polysulfides but also dynamically promotes polysulfide redox reactions. In addition, the 2D graphene nanosheets can provide an extra physical barrier to mitigate the diffusion of lithium polysulfides and enable much more uniform sulfur distribution, thus dramatically inhibiting polysulfides shuttling meanwhile accelerating sulfur conversion reactions. As a result, the cells with MoSSe@graphene nanohybrid achieved a superior rate performance (1091 mAh/g at 1C) and an ultralow decaying rate of 0.040 % per cycle after 1000 cycles at 1C.</description><subject>Li-S batteries</subject><subject>Nanohybrid engineering</subject><subject>Sulfiphilicity-lithiophilicity</subject><subject>Transition-metal dichalcogenides</subject><subject>Ultrafast microwave synthesis</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM2O0zAURq0RiCkDLzAL5CWbBP_ETiyxAI2YAamIRZm15dg3HVdJXHzdor49qTqwZHU35zvSPYTcclZzxvWHXb3zEWvBRFMzU7OmuyIrzoyqWs7kC7JiTPDKtKa9Jq8Rd4xxrpR5Ra6lEUZKrVYkP44lu8FhoVP0Of12R6B4mssTYESaBvo9bTbwiW6z2z_BDNSnaZ8wFkB6jI6Ggxupm2OaaVgm25kOKdMxzdvKn_zo-hHoOlYb2rtSIEfAN-Tl4EaEt8_3hjzef_l597Va_3j4dvd5XXkh21KJXgOD3inRd510XnmuuyC9d1oPHjqlZdcMind923jRhSCUCaZXQrGgB63lDXl_8e5z-nUALHaK6GEc3QzpgFZyplsplGoWVFzQpQBihsHuc5xcPlnO7Lm13dlza3tubZmxS-tl9O7Zf-gnCP8mf-MuwMcLAMuXxwjZoo8wewgxgy82pPg__x9bfJGe</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Wei, Zhen</creator><creator>Sarwar, Shatila</creator><creator>Zhang, Xinyu</creator><creator>Wang, Ruigang</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0678-7460</orcidid></search><sort><creationdate>20250115</creationdate><title>Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries</title><author>Wei, Zhen ; Sarwar, Shatila ; Zhang, Xinyu ; Wang, Ruigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-2b6e0eba52b883ac5c168d3cca66fce856384f518b74c28dd259d9b5250d6f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Li-S batteries</topic><topic>Nanohybrid engineering</topic><topic>Sulfiphilicity-lithiophilicity</topic><topic>Transition-metal dichalcogenides</topic><topic>Ultrafast microwave synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Sarwar, Shatila</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Wang, Ruigang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhen</au><au>Sarwar, Shatila</au><au>Zhang, Xinyu</au><au>Wang, Ruigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>678</volume><issue>Pt C</issue><spage>210</spage><epage>226</epage><pages>210-226</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batteries. However, the sluggish redox kinetics and formidable dissolution of polysulfides lead to poor sulfur utilization, serious polarization issues, and cyclic instability. Herein, sulfiphilic few-layer MoSSe nanoflake decorated on graphene (MoSSe@graphene), a two-dimensional and catalytically active hetero-structure composite, was prepared through a facile microwave method, which was used as a conceptually new sulfur host and served as an interfacial kinetic accelerator for LSBs. Specifically, this sulfiphilic MoSSe nanoflake not only strongly interacts with soluble polysulfides but also dynamically promotes polysulfide redox reactions. In addition, the 2D graphene nanosheets can provide an extra physical barrier to mitigate the diffusion of lithium polysulfides and enable much more uniform sulfur distribution, thus dramatically inhibiting polysulfides shuttling meanwhile accelerating sulfur conversion reactions. As a result, the cells with MoSSe@graphene nanohybrid achieved a superior rate performance (1091 mAh/g at 1C) and an ultralow decaying rate of 0.040 % per cycle after 1000 cycles at 1C.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39293365</pmid><doi>10.1016/j.jcis.2024.09.048</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0678-7460</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2025-01, Vol.678 (Pt C), p.210-226 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3106732554 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Li-S batteries Nanohybrid engineering Sulfiphilicity-lithiophilicity Transition-metal dichalcogenides Ultrafast microwave synthesis |
title | Ultrafast microwave synthesis of MoSSe@ graphene composites via dual anion design for long-cyclable Li-S batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20microwave%20synthesis%20of%20MoSSe@%20graphene%20composites%20via%20dual%20anion%20design%20for%20long-cyclable%20Li-S%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wei,%20Zhen&rft.date=2025-01-15&rft.volume=678&rft.issue=Pt%20C&rft.spage=210&rft.epage=226&rft.pages=210-226&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.09.048&rft_dat=%3Cproquest_cross%3E3106732554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106732554&rft_id=info:pmid/39293365&rft_els_id=S0021979724021064&rfr_iscdi=true |